| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dstrvprob.1 |
|- ( ph -> P e. Prob ) |
| 2 |
|
dstrvprob.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
| 3 |
|
dstrvprob.3 |
|- ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ a e. BrSiga ) -> P e. Prob ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ a e. BrSiga ) -> X e. ( rRndVar ` P ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ a e. BrSiga ) -> a e. BrSiga ) |
| 7 |
4 5 6
|
orvcelel |
|- ( ( ph /\ a e. BrSiga ) -> ( X oRVC _E a ) e. dom P ) |
| 8 |
|
prob01 |
|- ( ( P e. Prob /\ ( X oRVC _E a ) e. dom P ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) ) |
| 9 |
4 7 8
|
syl2anc |
|- ( ( ph /\ a e. BrSiga ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) ) |
| 10 |
|
elunitrn |
|- ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. RR ) |
| 11 |
10
|
rexrd |
|- ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. RR* ) |
| 12 |
|
elunitge0 |
|- ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> 0 <_ ( P ` ( X oRVC _E a ) ) ) |
| 13 |
|
elxrge0 |
|- ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) <-> ( ( P ` ( X oRVC _E a ) ) e. RR* /\ 0 <_ ( P ` ( X oRVC _E a ) ) ) ) |
| 14 |
11 12 13
|
sylanbrc |
|- ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) |
| 15 |
9 14
|
syl |
|- ( ( ph /\ a e. BrSiga ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) |
| 16 |
3 15
|
fmpt3d |
|- ( ph -> D : BrSiga --> ( 0 [,] +oo ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ a = (/) ) -> a = (/) ) |
| 18 |
17
|
oveq2d |
|- ( ( ph /\ a = (/) ) -> ( X oRVC _E a ) = ( X oRVC _E (/) ) ) |
| 19 |
18
|
fveq2d |
|- ( ( ph /\ a = (/) ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( X oRVC _E (/) ) ) ) |
| 20 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
| 21 |
|
elrnsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) |
| 22 |
|
0elsiga |
|- ( BrSiga e. U. ran sigAlgebra -> (/) e. BrSiga ) |
| 23 |
20 21 22
|
mp2b |
|- (/) e. BrSiga |
| 24 |
23
|
a1i |
|- ( ph -> (/) e. BrSiga ) |
| 25 |
1 2 24
|
orvcelel |
|- ( ph -> ( X oRVC _E (/) ) e. dom P ) |
| 26 |
1 25
|
probvalrnd |
|- ( ph -> ( P ` ( X oRVC _E (/) ) ) e. RR ) |
| 27 |
3 19 24 26
|
fvmptd |
|- ( ph -> ( D ` (/) ) = ( P ` ( X oRVC _E (/) ) ) ) |
| 28 |
1 2 24
|
orvcelval |
|- ( ph -> ( X oRVC _E (/) ) = ( `' X " (/) ) ) |
| 29 |
28
|
fveq2d |
|- ( ph -> ( P ` ( X oRVC _E (/) ) ) = ( P ` ( `' X " (/) ) ) ) |
| 30 |
|
ima0 |
|- ( `' X " (/) ) = (/) |
| 31 |
30
|
fveq2i |
|- ( P ` ( `' X " (/) ) ) = ( P ` (/) ) |
| 32 |
|
probnul |
|- ( P e. Prob -> ( P ` (/) ) = 0 ) |
| 33 |
1 32
|
syl |
|- ( ph -> ( P ` (/) ) = 0 ) |
| 34 |
31 33
|
eqtrid |
|- ( ph -> ( P ` ( `' X " (/) ) ) = 0 ) |
| 35 |
27 29 34
|
3eqtrd |
|- ( ph -> ( D ` (/) ) = 0 ) |
| 36 |
1 2
|
rrvvf |
|- ( ph -> X : U. dom P --> RR ) |
| 37 |
36
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> X : U. dom P --> RR ) |
| 38 |
37
|
ffund |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Fun X ) |
| 39 |
|
unipreima |
|- ( Fun X -> ( `' X " U. x ) = U_ a e. x ( `' X " a ) ) |
| 40 |
39
|
fveq2d |
|- ( Fun X -> ( P ` ( `' X " U. x ) ) = ( P ` U_ a e. x ( `' X " a ) ) ) |
| 41 |
38 40
|
syl |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` ( `' X " U. x ) ) = ( P ` U_ a e. x ( `' X " a ) ) ) |
| 42 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> P e. Prob ) |
| 43 |
|
domprobmeas |
|- ( P e. Prob -> P e. ( measures ` dom P ) ) |
| 44 |
42 43
|
syl |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> P e. ( measures ` dom P ) ) |
| 45 |
|
nfv |
|- F/ a ( ph /\ x e. ~P BrSiga ) |
| 46 |
|
nfv |
|- F/ a x ~<_ _om |
| 47 |
|
nfdisj1 |
|- F/ a Disj_ a e. x a |
| 48 |
46 47
|
nfan |
|- F/ a ( x ~<_ _om /\ Disj_ a e. x a ) |
| 49 |
45 48
|
nfan |
|- F/ a ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) |
| 50 |
|
simplll |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ph ) |
| 51 |
|
simpr |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> a e. x ) |
| 52 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> x e. ~P BrSiga ) |
| 53 |
|
elelpwi |
|- ( ( a e. x /\ x e. ~P BrSiga ) -> a e. BrSiga ) |
| 54 |
51 52 53
|
syl2anc |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> a e. BrSiga ) |
| 55 |
1 2
|
rrvfinvima |
|- ( ph -> A. a e. BrSiga ( `' X " a ) e. dom P ) |
| 56 |
55
|
r19.21bi |
|- ( ( ph /\ a e. BrSiga ) -> ( `' X " a ) e. dom P ) |
| 57 |
50 54 56
|
syl2anc |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( `' X " a ) e. dom P ) |
| 58 |
57
|
ex |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( a e. x -> ( `' X " a ) e. dom P ) ) |
| 59 |
49 58
|
ralrimi |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> A. a e. x ( `' X " a ) e. dom P ) |
| 60 |
|
simprl |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> x ~<_ _om ) |
| 61 |
|
simprr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Disj_ a e. x a ) |
| 62 |
|
disjpreima |
|- ( ( Fun X /\ Disj_ a e. x a ) -> Disj_ a e. x ( `' X " a ) ) |
| 63 |
38 61 62
|
syl2anc |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Disj_ a e. x ( `' X " a ) ) |
| 64 |
|
measvuni |
|- ( ( P e. ( measures ` dom P ) /\ A. a e. x ( `' X " a ) e. dom P /\ ( x ~<_ _om /\ Disj_ a e. x ( `' X " a ) ) ) -> ( P ` U_ a e. x ( `' X " a ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) |
| 65 |
44 59 60 63 64
|
syl112anc |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` U_ a e. x ( `' X " a ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) |
| 66 |
41 65
|
eqtrd |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` ( `' X " U. x ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) |
| 67 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> X e. ( rRndVar ` P ) ) |
| 68 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) |
| 69 |
20 21
|
mp1i |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> BrSiga e. U. ran sigAlgebra ) |
| 70 |
|
simplr |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> x e. ~P BrSiga ) |
| 71 |
|
sigaclcu |
|- ( ( BrSiga e. U. ran sigAlgebra /\ x e. ~P BrSiga /\ x ~<_ _om ) -> U. x e. BrSiga ) |
| 72 |
69 70 60 71
|
syl3anc |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> U. x e. BrSiga ) |
| 73 |
42 67 68 72
|
dstrvval |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( D ` U. x ) = ( P ` ( `' X " U. x ) ) ) |
| 74 |
3 9
|
fvmpt2d |
|- ( ( ph /\ a e. BrSiga ) -> ( D ` a ) = ( P ` ( X oRVC _E a ) ) ) |
| 75 |
50 54 74
|
syl2anc |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( D ` a ) = ( P ` ( X oRVC _E a ) ) ) |
| 76 |
42
|
adantr |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> P e. Prob ) |
| 77 |
67
|
adantr |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> X e. ( rRndVar ` P ) ) |
| 78 |
76 77 54
|
orvcelval |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( X oRVC _E a ) = ( `' X " a ) ) |
| 79 |
78
|
fveq2d |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( `' X " a ) ) ) |
| 80 |
75 79
|
eqtrd |
|- ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( D ` a ) = ( P ` ( `' X " a ) ) ) |
| 81 |
80
|
ex |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( a e. x -> ( D ` a ) = ( P ` ( `' X " a ) ) ) ) |
| 82 |
49 81
|
ralrimi |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> A. a e. x ( D ` a ) = ( P ` ( `' X " a ) ) ) |
| 83 |
49 82
|
esumeq2d |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> sum* a e. x ( D ` a ) = sum* a e. x ( P ` ( `' X " a ) ) ) |
| 84 |
66 73 83
|
3eqtr4d |
|- ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) |
| 85 |
84
|
ex |
|- ( ( ph /\ x e. ~P BrSiga ) -> ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) |
| 86 |
85
|
ralrimiva |
|- ( ph -> A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) |
| 87 |
|
ismeas |
|- ( BrSiga e. U. ran sigAlgebra -> ( D e. ( measures ` BrSiga ) <-> ( D : BrSiga --> ( 0 [,] +oo ) /\ ( D ` (/) ) = 0 /\ A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) ) ) |
| 88 |
20 21 87
|
mp2b |
|- ( D e. ( measures ` BrSiga ) <-> ( D : BrSiga --> ( 0 [,] +oo ) /\ ( D ` (/) ) = 0 /\ A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) ) |
| 89 |
16 35 86 88
|
syl3anbrc |
|- ( ph -> D e. ( measures ` BrSiga ) ) |
| 90 |
3
|
dmeqd |
|- ( ph -> dom D = dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) |
| 91 |
15
|
ralrimiva |
|- ( ph -> A. a e. BrSiga ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) |
| 92 |
|
dmmptg |
|- ( A. a e. BrSiga ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) -> dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = BrSiga ) |
| 93 |
91 92
|
syl |
|- ( ph -> dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = BrSiga ) |
| 94 |
90 93
|
eqtrd |
|- ( ph -> dom D = BrSiga ) |
| 95 |
94
|
fveq2d |
|- ( ph -> ( measures ` dom D ) = ( measures ` BrSiga ) ) |
| 96 |
89 95
|
eleqtrrd |
|- ( ph -> D e. ( measures ` dom D ) ) |
| 97 |
|
measbasedom |
|- ( D e. U. ran measures <-> D e. ( measures ` dom D ) ) |
| 98 |
96 97
|
sylibr |
|- ( ph -> D e. U. ran measures ) |
| 99 |
94
|
unieqd |
|- ( ph -> U. dom D = U. BrSiga ) |
| 100 |
|
unibrsiga |
|- U. BrSiga = RR |
| 101 |
99 100
|
eqtrdi |
|- ( ph -> U. dom D = RR ) |
| 102 |
101
|
fveq2d |
|- ( ph -> ( D ` U. dom D ) = ( D ` RR ) ) |
| 103 |
|
simpr |
|- ( ( ph /\ a = RR ) -> a = RR ) |
| 104 |
103
|
oveq2d |
|- ( ( ph /\ a = RR ) -> ( X oRVC _E a ) = ( X oRVC _E RR ) ) |
| 105 |
|
baselsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> RR e. BrSiga ) |
| 106 |
20 105
|
mp1i |
|- ( ph -> RR e. BrSiga ) |
| 107 |
1 2 106
|
orvcelval |
|- ( ph -> ( X oRVC _E RR ) = ( `' X " RR ) ) |
| 108 |
107
|
adantr |
|- ( ( ph /\ a = RR ) -> ( X oRVC _E RR ) = ( `' X " RR ) ) |
| 109 |
104 108
|
eqtrd |
|- ( ( ph /\ a = RR ) -> ( X oRVC _E a ) = ( `' X " RR ) ) |
| 110 |
109
|
fveq2d |
|- ( ( ph /\ a = RR ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( `' X " RR ) ) ) |
| 111 |
|
fimacnv |
|- ( X : U. dom P --> RR -> ( `' X " RR ) = U. dom P ) |
| 112 |
36 111
|
syl |
|- ( ph -> ( `' X " RR ) = U. dom P ) |
| 113 |
112
|
fveq2d |
|- ( ph -> ( P ` ( `' X " RR ) ) = ( P ` U. dom P ) ) |
| 114 |
|
probtot |
|- ( P e. Prob -> ( P ` U. dom P ) = 1 ) |
| 115 |
1 114
|
syl |
|- ( ph -> ( P ` U. dom P ) = 1 ) |
| 116 |
113 115
|
eqtrd |
|- ( ph -> ( P ` ( `' X " RR ) ) = 1 ) |
| 117 |
116
|
adantr |
|- ( ( ph /\ a = RR ) -> ( P ` ( `' X " RR ) ) = 1 ) |
| 118 |
110 117
|
eqtrd |
|- ( ( ph /\ a = RR ) -> ( P ` ( X oRVC _E a ) ) = 1 ) |
| 119 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 120 |
3 118 106 119
|
fvmptd |
|- ( ph -> ( D ` RR ) = 1 ) |
| 121 |
102 120
|
eqtrd |
|- ( ph -> ( D ` U. dom D ) = 1 ) |
| 122 |
|
elprob |
|- ( D e. Prob <-> ( D e. U. ran measures /\ ( D ` U. dom D ) = 1 ) ) |
| 123 |
98 121 122
|
sylanbrc |
|- ( ph -> D e. Prob ) |