| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstrvprob.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | dstrvprob.3 |  |-  ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) | 
						
							| 4 | 1 | adantr |  |-  ( ( ph /\ a e. BrSiga ) -> P e. Prob ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ a e. BrSiga ) -> X e. ( rRndVar ` P ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ a e. BrSiga ) -> a e. BrSiga ) | 
						
							| 7 | 4 5 6 | orvcelel |  |-  ( ( ph /\ a e. BrSiga ) -> ( X oRVC _E a ) e. dom P ) | 
						
							| 8 |  | prob01 |  |-  ( ( P e. Prob /\ ( X oRVC _E a ) e. dom P ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) ) | 
						
							| 9 | 4 7 8 | syl2anc |  |-  ( ( ph /\ a e. BrSiga ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) ) | 
						
							| 10 |  | elunitrn |  |-  ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. RR ) | 
						
							| 11 | 10 | rexrd |  |-  ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. RR* ) | 
						
							| 12 |  | elunitge0 |  |-  ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> 0 <_ ( P ` ( X oRVC _E a ) ) ) | 
						
							| 13 |  | elxrge0 |  |-  ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) <-> ( ( P ` ( X oRVC _E a ) ) e. RR* /\ 0 <_ ( P ` ( X oRVC _E a ) ) ) ) | 
						
							| 14 | 11 12 13 | sylanbrc |  |-  ( ( P ` ( X oRVC _E a ) ) e. ( 0 [,] 1 ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) | 
						
							| 15 | 9 14 | syl |  |-  ( ( ph /\ a e. BrSiga ) -> ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) | 
						
							| 16 | 3 15 | fmpt3d |  |-  ( ph -> D : BrSiga --> ( 0 [,] +oo ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ a = (/) ) -> a = (/) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ph /\ a = (/) ) -> ( X oRVC _E a ) = ( X oRVC _E (/) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( ph /\ a = (/) ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( X oRVC _E (/) ) ) ) | 
						
							| 20 |  | brsigarn |  |-  BrSiga e. ( sigAlgebra ` RR ) | 
						
							| 21 |  | elrnsiga |  |-  ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) | 
						
							| 22 |  | 0elsiga |  |-  ( BrSiga e. U. ran sigAlgebra -> (/) e. BrSiga ) | 
						
							| 23 | 20 21 22 | mp2b |  |-  (/) e. BrSiga | 
						
							| 24 | 23 | a1i |  |-  ( ph -> (/) e. BrSiga ) | 
						
							| 25 | 1 2 24 | orvcelel |  |-  ( ph -> ( X oRVC _E (/) ) e. dom P ) | 
						
							| 26 | 1 25 | probvalrnd |  |-  ( ph -> ( P ` ( X oRVC _E (/) ) ) e. RR ) | 
						
							| 27 | 3 19 24 26 | fvmptd |  |-  ( ph -> ( D ` (/) ) = ( P ` ( X oRVC _E (/) ) ) ) | 
						
							| 28 | 1 2 24 | orvcelval |  |-  ( ph -> ( X oRVC _E (/) ) = ( `' X " (/) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ph -> ( P ` ( X oRVC _E (/) ) ) = ( P ` ( `' X " (/) ) ) ) | 
						
							| 30 |  | ima0 |  |-  ( `' X " (/) ) = (/) | 
						
							| 31 | 30 | fveq2i |  |-  ( P ` ( `' X " (/) ) ) = ( P ` (/) ) | 
						
							| 32 |  | probnul |  |-  ( P e. Prob -> ( P ` (/) ) = 0 ) | 
						
							| 33 | 1 32 | syl |  |-  ( ph -> ( P ` (/) ) = 0 ) | 
						
							| 34 | 31 33 | eqtrid |  |-  ( ph -> ( P ` ( `' X " (/) ) ) = 0 ) | 
						
							| 35 | 27 29 34 | 3eqtrd |  |-  ( ph -> ( D ` (/) ) = 0 ) | 
						
							| 36 | 1 2 | rrvvf |  |-  ( ph -> X : U. dom P --> RR ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> X : U. dom P --> RR ) | 
						
							| 38 | 37 | ffund |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Fun X ) | 
						
							| 39 |  | unipreima |  |-  ( Fun X -> ( `' X " U. x ) = U_ a e. x ( `' X " a ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( Fun X -> ( P ` ( `' X " U. x ) ) = ( P ` U_ a e. x ( `' X " a ) ) ) | 
						
							| 41 | 38 40 | syl |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` ( `' X " U. x ) ) = ( P ` U_ a e. x ( `' X " a ) ) ) | 
						
							| 42 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> P e. Prob ) | 
						
							| 43 |  | domprobmeas |  |-  ( P e. Prob -> P e. ( measures ` dom P ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> P e. ( measures ` dom P ) ) | 
						
							| 45 |  | nfv |  |-  F/ a ( ph /\ x e. ~P BrSiga ) | 
						
							| 46 |  | nfv |  |-  F/ a x ~<_ _om | 
						
							| 47 |  | nfdisj1 |  |-  F/ a Disj_ a e. x a | 
						
							| 48 | 46 47 | nfan |  |-  F/ a ( x ~<_ _om /\ Disj_ a e. x a ) | 
						
							| 49 | 45 48 | nfan |  |-  F/ a ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) | 
						
							| 50 |  | simplll |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ph ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> a e. x ) | 
						
							| 52 |  | simpllr |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> x e. ~P BrSiga ) | 
						
							| 53 |  | elelpwi |  |-  ( ( a e. x /\ x e. ~P BrSiga ) -> a e. BrSiga ) | 
						
							| 54 | 51 52 53 | syl2anc |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> a e. BrSiga ) | 
						
							| 55 | 1 2 | rrvfinvima |  |-  ( ph -> A. a e. BrSiga ( `' X " a ) e. dom P ) | 
						
							| 56 | 55 | r19.21bi |  |-  ( ( ph /\ a e. BrSiga ) -> ( `' X " a ) e. dom P ) | 
						
							| 57 | 50 54 56 | syl2anc |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( `' X " a ) e. dom P ) | 
						
							| 58 | 57 | ex |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( a e. x -> ( `' X " a ) e. dom P ) ) | 
						
							| 59 | 49 58 | ralrimi |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> A. a e. x ( `' X " a ) e. dom P ) | 
						
							| 60 |  | simprl |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> x ~<_ _om ) | 
						
							| 61 |  | simprr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Disj_ a e. x a ) | 
						
							| 62 |  | disjpreima |  |-  ( ( Fun X /\ Disj_ a e. x a ) -> Disj_ a e. x ( `' X " a ) ) | 
						
							| 63 | 38 61 62 | syl2anc |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> Disj_ a e. x ( `' X " a ) ) | 
						
							| 64 |  | measvuni |  |-  ( ( P e. ( measures ` dom P ) /\ A. a e. x ( `' X " a ) e. dom P /\ ( x ~<_ _om /\ Disj_ a e. x ( `' X " a ) ) ) -> ( P ` U_ a e. x ( `' X " a ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) | 
						
							| 65 | 44 59 60 63 64 | syl112anc |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` U_ a e. x ( `' X " a ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) | 
						
							| 66 | 41 65 | eqtrd |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( P ` ( `' X " U. x ) ) = sum* a e. x ( P ` ( `' X " a ) ) ) | 
						
							| 67 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> X e. ( rRndVar ` P ) ) | 
						
							| 68 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) | 
						
							| 69 | 20 21 | mp1i |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> BrSiga e. U. ran sigAlgebra ) | 
						
							| 70 |  | simplr |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> x e. ~P BrSiga ) | 
						
							| 71 |  | sigaclcu |  |-  ( ( BrSiga e. U. ran sigAlgebra /\ x e. ~P BrSiga /\ x ~<_ _om ) -> U. x e. BrSiga ) | 
						
							| 72 | 69 70 60 71 | syl3anc |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> U. x e. BrSiga ) | 
						
							| 73 | 42 67 68 72 | dstrvval |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( D ` U. x ) = ( P ` ( `' X " U. x ) ) ) | 
						
							| 74 | 3 9 | fvmpt2d |  |-  ( ( ph /\ a e. BrSiga ) -> ( D ` a ) = ( P ` ( X oRVC _E a ) ) ) | 
						
							| 75 | 50 54 74 | syl2anc |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( D ` a ) = ( P ` ( X oRVC _E a ) ) ) | 
						
							| 76 | 42 | adantr |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> P e. Prob ) | 
						
							| 77 | 67 | adantr |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> X e. ( rRndVar ` P ) ) | 
						
							| 78 | 76 77 54 | orvcelval |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( X oRVC _E a ) = ( `' X " a ) ) | 
						
							| 79 | 78 | fveq2d |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( `' X " a ) ) ) | 
						
							| 80 | 75 79 | eqtrd |  |-  ( ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) /\ a e. x ) -> ( D ` a ) = ( P ` ( `' X " a ) ) ) | 
						
							| 81 | 80 | ex |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( a e. x -> ( D ` a ) = ( P ` ( `' X " a ) ) ) ) | 
						
							| 82 | 49 81 | ralrimi |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> A. a e. x ( D ` a ) = ( P ` ( `' X " a ) ) ) | 
						
							| 83 | 49 82 | esumeq2d |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> sum* a e. x ( D ` a ) = sum* a e. x ( P ` ( `' X " a ) ) ) | 
						
							| 84 | 66 73 83 | 3eqtr4d |  |-  ( ( ( ph /\ x e. ~P BrSiga ) /\ ( x ~<_ _om /\ Disj_ a e. x a ) ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) | 
						
							| 85 | 84 | ex |  |-  ( ( ph /\ x e. ~P BrSiga ) -> ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) | 
						
							| 86 | 85 | ralrimiva |  |-  ( ph -> A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) | 
						
							| 87 |  | ismeas |  |-  ( BrSiga e. U. ran sigAlgebra -> ( D e. ( measures ` BrSiga ) <-> ( D : BrSiga --> ( 0 [,] +oo ) /\ ( D ` (/) ) = 0 /\ A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) ) ) | 
						
							| 88 | 20 21 87 | mp2b |  |-  ( D e. ( measures ` BrSiga ) <-> ( D : BrSiga --> ( 0 [,] +oo ) /\ ( D ` (/) ) = 0 /\ A. x e. ~P BrSiga ( ( x ~<_ _om /\ Disj_ a e. x a ) -> ( D ` U. x ) = sum* a e. x ( D ` a ) ) ) ) | 
						
							| 89 | 16 35 86 88 | syl3anbrc |  |-  ( ph -> D e. ( measures ` BrSiga ) ) | 
						
							| 90 | 3 | dmeqd |  |-  ( ph -> dom D = dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) | 
						
							| 91 | 15 | ralrimiva |  |-  ( ph -> A. a e. BrSiga ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) ) | 
						
							| 92 |  | dmmptg |  |-  ( A. a e. BrSiga ( P ` ( X oRVC _E a ) ) e. ( 0 [,] +oo ) -> dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = BrSiga ) | 
						
							| 93 | 91 92 | syl |  |-  ( ph -> dom ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = BrSiga ) | 
						
							| 94 | 90 93 | eqtrd |  |-  ( ph -> dom D = BrSiga ) | 
						
							| 95 | 94 | fveq2d |  |-  ( ph -> ( measures ` dom D ) = ( measures ` BrSiga ) ) | 
						
							| 96 | 89 95 | eleqtrrd |  |-  ( ph -> D e. ( measures ` dom D ) ) | 
						
							| 97 |  | measbasedom |  |-  ( D e. U. ran measures <-> D e. ( measures ` dom D ) ) | 
						
							| 98 | 96 97 | sylibr |  |-  ( ph -> D e. U. ran measures ) | 
						
							| 99 | 94 | unieqd |  |-  ( ph -> U. dom D = U. BrSiga ) | 
						
							| 100 |  | unibrsiga |  |-  U. BrSiga = RR | 
						
							| 101 | 99 100 | eqtrdi |  |-  ( ph -> U. dom D = RR ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ph -> ( D ` U. dom D ) = ( D ` RR ) ) | 
						
							| 103 |  | simpr |  |-  ( ( ph /\ a = RR ) -> a = RR ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ph /\ a = RR ) -> ( X oRVC _E a ) = ( X oRVC _E RR ) ) | 
						
							| 105 |  | baselsiga |  |-  ( BrSiga e. ( sigAlgebra ` RR ) -> RR e. BrSiga ) | 
						
							| 106 | 20 105 | mp1i |  |-  ( ph -> RR e. BrSiga ) | 
						
							| 107 | 1 2 106 | orvcelval |  |-  ( ph -> ( X oRVC _E RR ) = ( `' X " RR ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ a = RR ) -> ( X oRVC _E RR ) = ( `' X " RR ) ) | 
						
							| 109 | 104 108 | eqtrd |  |-  ( ( ph /\ a = RR ) -> ( X oRVC _E a ) = ( `' X " RR ) ) | 
						
							| 110 | 109 | fveq2d |  |-  ( ( ph /\ a = RR ) -> ( P ` ( X oRVC _E a ) ) = ( P ` ( `' X " RR ) ) ) | 
						
							| 111 |  | fimacnv |  |-  ( X : U. dom P --> RR -> ( `' X " RR ) = U. dom P ) | 
						
							| 112 | 36 111 | syl |  |-  ( ph -> ( `' X " RR ) = U. dom P ) | 
						
							| 113 | 112 | fveq2d |  |-  ( ph -> ( P ` ( `' X " RR ) ) = ( P ` U. dom P ) ) | 
						
							| 114 |  | probtot |  |-  ( P e. Prob -> ( P ` U. dom P ) = 1 ) | 
						
							| 115 | 1 114 | syl |  |-  ( ph -> ( P ` U. dom P ) = 1 ) | 
						
							| 116 | 113 115 | eqtrd |  |-  ( ph -> ( P ` ( `' X " RR ) ) = 1 ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ph /\ a = RR ) -> ( P ` ( `' X " RR ) ) = 1 ) | 
						
							| 118 | 110 117 | eqtrd |  |-  ( ( ph /\ a = RR ) -> ( P ` ( X oRVC _E a ) ) = 1 ) | 
						
							| 119 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 120 | 3 118 106 119 | fvmptd |  |-  ( ph -> ( D ` RR ) = 1 ) | 
						
							| 121 | 102 120 | eqtrd |  |-  ( ph -> ( D ` U. dom D ) = 1 ) | 
						
							| 122 |  | elprob |  |-  ( D e. Prob <-> ( D e. U. ran measures /\ ( D ` U. dom D ) = 1 ) ) | 
						
							| 123 | 98 121 122 | sylanbrc |  |-  ( ph -> D e. Prob ) |