Metamath Proof Explorer


Theorem orvcelval

Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1
|- ( ph -> P e. Prob )
dstrvprob.2
|- ( ph -> X e. ( rRndVar ` P ) )
orvcelel.1
|- ( ph -> A e. BrSiga )
Assertion orvcelval
|- ( ph -> ( X oRVC _E A ) = ( `' X " A ) )

Proof

Step Hyp Ref Expression
1 dstrvprob.1
 |-  ( ph -> P e. Prob )
2 dstrvprob.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 orvcelel.1
 |-  ( ph -> A e. BrSiga )
4 1 2 3 orrvcval4
 |-  ( ph -> ( X oRVC _E A ) = ( `' X " { x e. RR | x _E A } ) )
5 epelg
 |-  ( A e. BrSiga -> ( x _E A <-> x e. A ) )
6 3 5 syl
 |-  ( ph -> ( x _E A <-> x e. A ) )
7 6 rabbidv
 |-  ( ph -> { x e. RR | x _E A } = { x e. RR | x e. A } )
8 dfin5
 |-  ( RR i^i A ) = { x e. RR | x e. A }
9 8 a1i
 |-  ( ph -> ( RR i^i A ) = { x e. RR | x e. A } )
10 elssuni
 |-  ( A e. BrSiga -> A C_ U. BrSiga )
11 unibrsiga
 |-  U. BrSiga = RR
12 10 11 sseqtrdi
 |-  ( A e. BrSiga -> A C_ RR )
13 3 12 syl
 |-  ( ph -> A C_ RR )
14 sseqin2
 |-  ( A C_ RR <-> ( RR i^i A ) = A )
15 13 14 sylib
 |-  ( ph -> ( RR i^i A ) = A )
16 7 9 15 3eqtr2d
 |-  ( ph -> { x e. RR | x _E A } = A )
17 16 imaeq2d
 |-  ( ph -> ( `' X " { x e. RR | x _E A } ) = ( `' X " A ) )
18 4 17 eqtrd
 |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) )