Step |
Hyp |
Ref |
Expression |
1 |
|
dstrvprob.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstrvprob.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvcelel.1 |
|- ( ph -> A e. BrSiga ) |
4 |
1 2 3
|
orrvcval4 |
|- ( ph -> ( X oRVC _E A ) = ( `' X " { x e. RR | x _E A } ) ) |
5 |
|
epelg |
|- ( A e. BrSiga -> ( x _E A <-> x e. A ) ) |
6 |
3 5
|
syl |
|- ( ph -> ( x _E A <-> x e. A ) ) |
7 |
6
|
rabbidv |
|- ( ph -> { x e. RR | x _E A } = { x e. RR | x e. A } ) |
8 |
|
dfin5 |
|- ( RR i^i A ) = { x e. RR | x e. A } |
9 |
8
|
a1i |
|- ( ph -> ( RR i^i A ) = { x e. RR | x e. A } ) |
10 |
|
elssuni |
|- ( A e. BrSiga -> A C_ U. BrSiga ) |
11 |
|
unibrsiga |
|- U. BrSiga = RR |
12 |
10 11
|
sseqtrdi |
|- ( A e. BrSiga -> A C_ RR ) |
13 |
3 12
|
syl |
|- ( ph -> A C_ RR ) |
14 |
|
sseqin2 |
|- ( A C_ RR <-> ( RR i^i A ) = A ) |
15 |
13 14
|
sylib |
|- ( ph -> ( RR i^i A ) = A ) |
16 |
7 9 15
|
3eqtr2d |
|- ( ph -> { x e. RR | x _E A } = A ) |
17 |
16
|
imaeq2d |
|- ( ph -> ( `' X " { x e. RR | x _E A } ) = ( `' X " A ) ) |
18 |
4 17
|
eqtrd |
|- ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) |