| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstrvprob.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvcelel.1 |  |-  ( ph -> A e. BrSiga ) | 
						
							| 4 | 1 2 3 | orrvcval4 |  |-  ( ph -> ( X oRVC _E A ) = ( `' X " { x e. RR | x _E A } ) ) | 
						
							| 5 |  | epelg |  |-  ( A e. BrSiga -> ( x _E A <-> x e. A ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> ( x _E A <-> x e. A ) ) | 
						
							| 7 | 6 | rabbidv |  |-  ( ph -> { x e. RR | x _E A } = { x e. RR | x e. A } ) | 
						
							| 8 |  | dfin5 |  |-  ( RR i^i A ) = { x e. RR | x e. A } | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( RR i^i A ) = { x e. RR | x e. A } ) | 
						
							| 10 |  | elssuni |  |-  ( A e. BrSiga -> A C_ U. BrSiga ) | 
						
							| 11 |  | unibrsiga |  |-  U. BrSiga = RR | 
						
							| 12 | 10 11 | sseqtrdi |  |-  ( A e. BrSiga -> A C_ RR ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> A C_ RR ) | 
						
							| 14 |  | sseqin2 |  |-  ( A C_ RR <-> ( RR i^i A ) = A ) | 
						
							| 15 | 13 14 | sylib |  |-  ( ph -> ( RR i^i A ) = A ) | 
						
							| 16 | 7 9 15 | 3eqtr2d |  |-  ( ph -> { x e. RR | x _E A } = A ) | 
						
							| 17 | 16 | imaeq2d |  |-  ( ph -> ( `' X " { x e. RR | x _E A } ) = ( `' X " A ) ) | 
						
							| 18 | 4 17 | eqtrd |  |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) |