| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsnegb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  𝑀  ∥  - 𝑁 ) ) | 
						
							| 2 |  | znegcl | ⊢ ( 𝑁  ∈  ℤ  →  - 𝑁  ∈  ℤ ) | 
						
							| 3 |  | dvdsadd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝑀  ∥  - 𝑁  ↔  𝑀  ∥  ( 𝑀  +  - 𝑁 ) ) ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  - 𝑁  ↔  𝑀  ∥  ( 𝑀  +  - 𝑁 ) ) ) | 
						
							| 5 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 7 |  | negsub | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑀  +  - 𝑁 )  =  ( 𝑀  −  𝑁 ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  +  - 𝑁 )  =  ( 𝑀  −  𝑁 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  +  - 𝑁 )  ↔  𝑀  ∥  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 10 | 1 4 9 | 3bitrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  𝑀  ∥  ( 𝑀  −  𝑁 ) ) ) |