Metamath Proof Explorer


Theorem dvmptidg

Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptidg.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptidg.a ( 𝜑𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
Assertion dvmptidg ( 𝜑 → ( 𝑆 D ( 𝑥𝐴𝑥 ) ) = ( 𝑥𝐴 ↦ 1 ) )

Proof

Step Hyp Ref Expression
1 dvmptidg.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptidg.a ( 𝜑𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
3 ax-resscn ℝ ⊆ ℂ
4 sseq1 ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) )
5 3 4 mpbiri ( 𝑆 = ℝ → 𝑆 ⊆ ℂ )
6 eqimss ( 𝑆 = ℂ → 𝑆 ⊆ ℂ )
7 5 6 pm3.2i ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) )
8 elpri ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) )
9 1 8 syl ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) )
10 pm3.44 ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) )
11 7 9 10 mpsyl ( 𝜑𝑆 ⊆ ℂ )
12 11 sselda ( ( 𝜑𝑥𝑆 ) → 𝑥 ∈ ℂ )
13 1red ( ( 𝜑𝑥𝑆 ) → 1 ∈ ℝ )
14 1 dvmptid ( 𝜑 → ( 𝑆 D ( 𝑥𝑆𝑥 ) ) = ( 𝑥𝑆 ↦ 1 ) )
15 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
16 15 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
17 16 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
18 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
19 17 11 18 syl2anc ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
20 toponss ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → 𝐴𝑆 )
21 19 2 20 syl2anc ( 𝜑𝐴𝑆 )
22 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
23 1 12 13 14 21 22 15 2 dvmptres ( 𝜑 → ( 𝑆 D ( 𝑥𝐴𝑥 ) ) = ( 𝑥𝐴 ↦ 1 ) )