Metamath Proof Explorer


Theorem ee10an

Description: e10an without virtual deductions. sylancl is also e10an without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee10an.1 ( 𝜑𝜓 )
ee10an.2 𝜒
ee10an.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion ee10an ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 ee10an.1 ( 𝜑𝜓 )
2 ee10an.2 𝜒
3 ee10an.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 2 3 sylancl ( 𝜑𝜃 )