Metamath Proof Explorer


Theorem efgredlemb

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
efgredlem.1 ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) )
efgredlem.2 ( 𝜑𝐴 ∈ dom 𝑆 )
efgredlem.3 ( 𝜑𝐵 ∈ dom 𝑆 )
efgredlem.4 ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑆𝐵 ) )
efgredlem.5 ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
efgredlemb.k 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 )
efgredlemb.l 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 )
efgredlemb.p ( 𝜑𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴𝐾 ) ) ) )
efgredlemb.q ( 𝜑𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵𝐿 ) ) ) )
efgredlemb.u ( 𝜑𝑈 ∈ ( 𝐼 × 2o ) )
efgredlemb.v ( 𝜑𝑉 ∈ ( 𝐼 × 2o ) )
efgredlemb.6 ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴𝐾 ) ) 𝑈 ) )
efgredlemb.7 ( 𝜑 → ( 𝑆𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵𝐿 ) ) 𝑉 ) )
efgredlemb.8 ( 𝜑 → ¬ ( 𝐴𝐾 ) = ( 𝐵𝐿 ) )
Assertion efgredlemb ¬ 𝜑

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 efgredlem.1 ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) )
8 efgredlem.2 ( 𝜑𝐴 ∈ dom 𝑆 )
9 efgredlem.3 ( 𝜑𝐵 ∈ dom 𝑆 )
10 efgredlem.4 ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑆𝐵 ) )
11 efgredlem.5 ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
12 efgredlemb.k 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 )
13 efgredlemb.l 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 )
14 efgredlemb.p ( 𝜑𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴𝐾 ) ) ) )
15 efgredlemb.q ( 𝜑𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵𝐿 ) ) ) )
16 efgredlemb.u ( 𝜑𝑈 ∈ ( 𝐼 × 2o ) )
17 efgredlemb.v ( 𝜑𝑉 ∈ ( 𝐼 × 2o ) )
18 efgredlemb.6 ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴𝐾 ) ) 𝑈 ) )
19 efgredlemb.7 ( 𝜑 → ( 𝑆𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵𝐿 ) ) 𝑉 ) )
20 efgredlemb.8 ( 𝜑 → ¬ ( 𝐴𝐾 ) = ( 𝐵𝐿 ) )
21 fveq2 ( ( 𝑆𝐴 ) = ( 𝑆𝐵 ) → ( ♯ ‘ ( 𝑆𝐴 ) ) = ( ♯ ‘ ( 𝑆𝐵 ) ) )
22 21 breq2d ( ( 𝑆𝐴 ) = ( 𝑆𝐵 ) → ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐵 ) ) ) )
23 22 imbi1d ( ( 𝑆𝐴 ) = ( 𝑆𝐵 ) → ( ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐵 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) )
24 23 2ralbidv ( ( 𝑆𝐴 ) = ( 𝑆𝐵 ) → ( ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐵 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) )
25 10 24 syl ( 𝜑 → ( ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐴 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐵 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) )
26 7 25 mpbid ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆𝑎 ) ) < ( ♯ ‘ ( 𝑆𝐵 ) ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) )
27 10 eqcomd ( 𝜑 → ( 𝑆𝐵 ) = ( 𝑆𝐴 ) )
28 eqcom ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ↔ ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) )
29 11 28 sylnib ( 𝜑 → ¬ ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) )
30 eqcom ( ( 𝐴𝐾 ) = ( 𝐵𝐿 ) ↔ ( 𝐵𝐿 ) = ( 𝐴𝐾 ) )
31 20 30 sylnib ( 𝜑 → ¬ ( 𝐵𝐿 ) = ( 𝐴𝐾 ) )
32 1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31 efgredlemc ( 𝜑 → ( 𝑄 ∈ ( ℤ𝑃 ) → ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) )
33 32 28 syl6ibr ( 𝜑 → ( 𝑄 ∈ ( ℤ𝑃 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) )
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 efgredlemc ( 𝜑 → ( 𝑃 ∈ ( ℤ𝑄 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) )
35 elfzelz ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴𝐾 ) ) ) → 𝑃 ∈ ℤ )
36 14 35 syl ( 𝜑𝑃 ∈ ℤ )
37 elfzelz ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵𝐿 ) ) ) → 𝑄 ∈ ℤ )
38 15 37 syl ( 𝜑𝑄 ∈ ℤ )
39 uztric ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 𝑄 ∈ ( ℤ𝑃 ) ∨ 𝑃 ∈ ( ℤ𝑄 ) ) )
40 36 38 39 syl2anc ( 𝜑 → ( 𝑄 ∈ ( ℤ𝑃 ) ∨ 𝑃 ∈ ( ℤ𝑄 ) ) )
41 33 34 40 mpjaod ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
42 41 11 pm2.65i ¬ 𝜑