| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | efgredlem.1 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) ) | 
						
							| 8 |  | efgredlem.2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  𝑆 ) | 
						
							| 9 |  | efgredlem.3 | ⊢ ( 𝜑  →  𝐵  ∈  dom  𝑆 ) | 
						
							| 10 |  | efgredlem.4 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 11 |  | efgredlem.5 | ⊢ ( 𝜑  →  ¬  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 12 |  | efgredlemb.k | ⊢ 𝐾  =  ( ( ( ♯ ‘ 𝐴 )  −  1 )  −  1 ) | 
						
							| 13 |  | efgredlemb.l | ⊢ 𝐿  =  ( ( ( ♯ ‘ 𝐵 )  −  1 )  −  1 ) | 
						
							| 14 |  | efgredlemb.p | ⊢ ( 𝜑  →  𝑃  ∈  ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | 
						
							| 15 |  | efgredlemb.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | 
						
							| 16 |  | efgredlemb.u | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 17 |  | efgredlemb.v | ⊢ ( 𝜑  →  𝑉  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 18 |  | efgredlemb.6 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐴 )  =  ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | 
						
							| 19 |  | efgredlemb.7 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐵 )  =  ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | 
						
							| 20 |  | efgredlemb.8 | ⊢ ( 𝜑  →  ¬  ( 𝐴 ‘ 𝐾 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐵 )  →  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  =  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐵 )  →  ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  ↔  ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 23 | 22 | imbi1d | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐵 )  →  ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) )  ↔  ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 24 | 23 | 2ralbidv | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐵 )  →  ( ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) )  ↔  ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 25 | 10 24 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) )  ↔  ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 26 | 7 25 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  dom  𝑆 ∀ 𝑏  ∈  dom  𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) )  <  ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) )  →  ( ( 𝑆 ‘ 𝑎 )  =  ( 𝑆 ‘ 𝑏 )  →  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) ) | 
						
							| 27 | 10 | eqcomd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐵 )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 28 |  | eqcom | ⊢ ( ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 )  ↔  ( 𝐵 ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 29 | 11 28 | sylnib | ⊢ ( 𝜑  →  ¬  ( 𝐵 ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 30 |  | eqcom | ⊢ ( ( 𝐴 ‘ 𝐾 )  =  ( 𝐵 ‘ 𝐿 )  ↔  ( 𝐵 ‘ 𝐿 )  =  ( 𝐴 ‘ 𝐾 ) ) | 
						
							| 31 | 20 30 | sylnib | ⊢ ( 𝜑  →  ¬  ( 𝐵 ‘ 𝐿 )  =  ( 𝐴 ‘ 𝐾 ) ) | 
						
							| 32 | 1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31 | efgredlemc | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℤ≥ ‘ 𝑃 )  →  ( 𝐵 ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) ) | 
						
							| 33 | 32 28 | imbitrrdi | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℤ≥ ‘ 𝑃 )  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | efgredlemc | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℤ≥ ‘ 𝑄 )  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) ) | 
						
							| 35 | 14 | elfzelzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 36 | 15 | elfzelzd | ⊢ ( 𝜑  →  𝑄  ∈  ℤ ) | 
						
							| 37 |  | uztric | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  ( 𝑄  ∈  ( ℤ≥ ‘ 𝑃 )  ∨  𝑃  ∈  ( ℤ≥ ‘ 𝑄 ) ) ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℤ≥ ‘ 𝑃 )  ∨  𝑃  ∈  ( ℤ≥ ‘ 𝑄 ) ) ) | 
						
							| 39 | 33 34 38 | mpjaod | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 40 | 39 11 | pm2.65i | ⊢ ¬  𝜑 |