| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efmul2picn.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 2 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
|
2cn |
⊢ 2 ∈ ℂ |
| 6 |
|
picn |
⊢ π ∈ ℂ |
| 7 |
5 6
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 8 |
4 7
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 10 |
|
cncfrss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) → 𝐴 ⊆ ℂ ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 12 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 13 |
|
cncfmptc |
⊢ ( ( ( i · ( 2 · π ) ) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ( i · ( 2 · π ) ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 14 |
9 11 12 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( i · ( 2 · π ) ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 15 |
14 1
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( i · ( 2 · π ) ) · 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 16 |
3 15
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐵 ) ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |