Metamath Proof Explorer


Theorem efmul2picn

Description: Multiplying by (i x. ( 2 x. pi ) ) and taking the exponential preserves continuity. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypothesis efmul2picn.1 φxAB:Acn
Assertion efmul2picn φxAei2πB:Acn

Proof

Step Hyp Ref Expression
1 efmul2picn.1 φxAB:Acn
2 efcn exp:cn
3 2 a1i φexp:cn
4 ax-icn i
5 2cn 2
6 picn π
7 5 6 mulcli 2π
8 4 7 mulcli i2π
9 8 a1i φi2π
10 cncfrss xAB:AcnA
11 1 10 syl φA
12 ssidd φ
13 cncfmptc i2πAxAi2π:Acn
14 9 11 12 13 syl3anc φxAi2π:Acn
15 14 1 mulcncf φxAi2πB:Acn
16 3 15 cncfmpt1f φxAei2πB:Acn