Metamath Proof Explorer


Theorem elclnbgrelnbgr

Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025)

Ref Expression
Assertion elclnbgrelnbgr ( ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ∧ 𝑋𝑁 ) → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 1 clnbgrcl ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )
3 1 dfclnbgr4 ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) )
4 2 3 syl ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) )
5 4 eleq2d ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ↔ 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
6 elun ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ↔ ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
7 elsng ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } ↔ 𝑋 = 𝑁 ) )
8 eqneqall ( 𝑋 = 𝑁 → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
9 8 a1i ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 = 𝑁 → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
10 7 9 sylbid ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
11 ax-1 ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
12 11 a1i ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
13 10 12 jaod ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
14 6 13 biimtrid ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
15 5 14 sylbid ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) )
16 15 pm2.43i ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋𝑁𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
17 16 imp ( ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ∧ 𝑋𝑁 ) → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) )