Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
clnbgrcl |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
3 |
1
|
dfclnbgr4 |
⊢ ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ↔ 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
6 |
|
elun |
⊢ ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ↔ ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
7 |
|
elsng |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } ↔ 𝑋 = 𝑁 ) ) |
8 |
|
eqneqall |
⊢ ( 𝑋 = 𝑁 → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 = 𝑁 → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
10 |
7 9
|
sylbid |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
11 |
|
ax-1 |
⊢ ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
12 |
11
|
a1i |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
13 |
10 12
|
jaod |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
14 |
6 13
|
biimtrid |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
15 |
5 14
|
sylbid |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
16 |
15
|
pm2.43i |
⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ∧ 𝑋 ≠ 𝑁 ) → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |