| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elcoeleqvrels |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ) ) |
| 2 |
|
1cosscnvepresex |
⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) |
| 3 |
|
eleqvrelsrel |
⊢ ( ≀ ( ◡ E ↾ 𝐴 ) ∈ V → ( ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 5 |
1 4
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 6 |
|
df-coeleqvrel |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) |
| 7 |
5 6
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴 ) ) |