Metamath Proof Explorer


Theorem eldisjs4

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion eldisjs4 ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 eldisjs2 ( 𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) )
2 cosscnvssid4 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 )
3 2 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥𝑅 ∈ Rels ) )
4 1 3 bitri ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥𝑅 ∈ Rels ) )