Metamath Proof Explorer


Theorem elfunsALTV

Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021)

Ref Expression
Assertion elfunsALTV ( 𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dffunsALTV FunsALTV = { 𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels }
2 cosseq ( 𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹 )
3 2 eleq1d ( 𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels ) )
4 1 3 rabeqel ( 𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) )