Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
⊢ ( 𝐴 = 𝐵 → ( 𝑢 𝐴 𝑥 ↔ 𝑢 𝐵 𝑥 ) ) |
2 |
|
breq |
⊢ ( 𝐴 = 𝐵 → ( 𝑢 𝐴 𝑦 ↔ 𝑢 𝐵 𝑦 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) ↔ ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) ) ) |
4 |
3
|
exbidv |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) ) ) |
5 |
4
|
opabbidv |
⊢ ( 𝐴 = 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) } ) |
6 |
|
df-coss |
⊢ ≀ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) } |
7 |
|
df-coss |
⊢ ≀ 𝐵 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) } |
8 |
5 6 7
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵 ) |