| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzofz |
⊢ ( 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐴 ∈ ( 𝑀 ... 𝑁 ) ) |
| 2 |
|
elfzolt2 |
⊢ ( 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐴 < 𝑁 ) |
| 3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) ) |
| 4 |
|
elfzuz |
⊢ ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
|
elfzel2 |
⊢ ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) → 𝑁 ∈ ℤ ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) → 𝐴 < 𝑁 ) |
| 9 |
|
elfzo2 |
⊢ ( 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐴 < 𝑁 ) ) |
| 10 |
5 7 8 9
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) → 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 11 |
3 10
|
impbii |
⊢ ( 𝐴 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐴 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐴 < 𝑁 ) ) |