Metamath Proof Explorer


Theorem elfzfzo

Description: Relationship between membership in a half-open finite set of sequential integers and membership in a finite set of sequential intergers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elfzfzo A M ..^ N A M N A < N

Proof

Step Hyp Ref Expression
1 elfzofz A M ..^ N A M N
2 elfzolt2 A M ..^ N A < N
3 1 2 jca A M ..^ N A M N A < N
4 elfzuz A M N A M
5 4 adantr A M N A < N A M
6 elfzel2 A M N N
7 6 adantr A M N A < N N
8 simpr A M N A < N A < N
9 elfzo2 A M ..^ N A M N A < N
10 5 7 8 9 syl3anbrc A M N A < N A M ..^ N
11 3 10 impbii A M ..^ N A M N A < N