Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|
2 |
|
1red |
|
3 |
1 2
|
resubcld |
|
4 |
|
2rp |
|
5 |
4
|
a1i |
|
6 |
1
|
lem1d |
|
7 |
3 1 5 6
|
lediv1dd |
|
8 |
1
|
rehalfcld |
|
9 |
5
|
rpreccld |
|
10 |
8 9
|
ltaddrpd |
|
11 |
|
zcn |
|
12 |
2
|
recnd |
|
13 |
|
2cnd |
|
14 |
5
|
rpne0d |
|
15 |
11 12 13 14
|
divsubdird |
|
16 |
15
|
oveq1d |
|
17 |
11
|
halfcld |
|
18 |
13 14
|
reccld |
|
19 |
17 18 12
|
subadd23d |
|
20 |
|
1mhlfehlf |
|
21 |
20
|
oveq2i |
|
22 |
21
|
a1i |
|
23 |
16 19 22
|
3eqtrrd |
|
24 |
10 23
|
breqtrd |
|
25 |
7 24
|
jca |
|
26 |
25
|
adantr |
|
27 |
1
|
adantr |
|
28 |
27
|
rehalfcld |
|
29 |
11 12
|
npcand |
|
30 |
29
|
oveq1d |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
32
|
neneqd |
|
34 |
|
mod0 |
|
35 |
1 5 34
|
syl2anc |
|
36 |
35
|
adantr |
|
37 |
33 36
|
mtbid |
|
38 |
31 37
|
eqneltrd |
|
39 |
|
simpl |
|
40 |
|
1zzd |
|
41 |
39 40
|
zsubcld |
|
42 |
|
zeo2 |
|
43 |
41 42
|
syl |
|
44 |
38 43
|
mpbird |
|
45 |
|
flbi |
|
46 |
28 44 45
|
syl2anc |
|
47 |
26 46
|
mpbird |
|
48 |
47
|
oveq2d |
|
49 |
48
|
oveq1d |
|
50 |
11 12
|
subcld |
|
51 |
50 13 14
|
divcan2d |
|
52 |
51
|
oveq1d |
|
53 |
52
|
adantr |
|
54 |
29
|
adantr |
|
55 |
49 53 54
|
3eqtrrd |
|