| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
| 2 |
|
1red |
|- ( K e. ZZ -> 1 e. RR ) |
| 3 |
1 2
|
resubcld |
|- ( K e. ZZ -> ( K - 1 ) e. RR ) |
| 4 |
|
2rp |
|- 2 e. RR+ |
| 5 |
4
|
a1i |
|- ( K e. ZZ -> 2 e. RR+ ) |
| 6 |
1
|
lem1d |
|- ( K e. ZZ -> ( K - 1 ) <_ K ) |
| 7 |
3 1 5 6
|
lediv1dd |
|- ( K e. ZZ -> ( ( K - 1 ) / 2 ) <_ ( K / 2 ) ) |
| 8 |
1
|
rehalfcld |
|- ( K e. ZZ -> ( K / 2 ) e. RR ) |
| 9 |
5
|
rpreccld |
|- ( K e. ZZ -> ( 1 / 2 ) e. RR+ ) |
| 10 |
8 9
|
ltaddrpd |
|- ( K e. ZZ -> ( K / 2 ) < ( ( K / 2 ) + ( 1 / 2 ) ) ) |
| 11 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 12 |
2
|
recnd |
|- ( K e. ZZ -> 1 e. CC ) |
| 13 |
|
2cnd |
|- ( K e. ZZ -> 2 e. CC ) |
| 14 |
5
|
rpne0d |
|- ( K e. ZZ -> 2 =/= 0 ) |
| 15 |
11 12 13 14
|
divsubdird |
|- ( K e. ZZ -> ( ( K - 1 ) / 2 ) = ( ( K / 2 ) - ( 1 / 2 ) ) ) |
| 16 |
15
|
oveq1d |
|- ( K e. ZZ -> ( ( ( K - 1 ) / 2 ) + 1 ) = ( ( ( K / 2 ) - ( 1 / 2 ) ) + 1 ) ) |
| 17 |
11
|
halfcld |
|- ( K e. ZZ -> ( K / 2 ) e. CC ) |
| 18 |
13 14
|
reccld |
|- ( K e. ZZ -> ( 1 / 2 ) e. CC ) |
| 19 |
17 18 12
|
subadd23d |
|- ( K e. ZZ -> ( ( ( K / 2 ) - ( 1 / 2 ) ) + 1 ) = ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) ) |
| 20 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
| 21 |
20
|
oveq2i |
|- ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) = ( ( K / 2 ) + ( 1 / 2 ) ) |
| 22 |
21
|
a1i |
|- ( K e. ZZ -> ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) = ( ( K / 2 ) + ( 1 / 2 ) ) ) |
| 23 |
16 19 22
|
3eqtrrd |
|- ( K e. ZZ -> ( ( K / 2 ) + ( 1 / 2 ) ) = ( ( ( K - 1 ) / 2 ) + 1 ) ) |
| 24 |
10 23
|
breqtrd |
|- ( K e. ZZ -> ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) |
| 25 |
7 24
|
jca |
|- ( K e. ZZ -> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) |
| 26 |
25
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) |
| 27 |
1
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K e. RR ) |
| 28 |
27
|
rehalfcld |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K / 2 ) e. RR ) |
| 29 |
11 12
|
npcand |
|- ( K e. ZZ -> ( ( K - 1 ) + 1 ) = K ) |
| 30 |
29
|
oveq1d |
|- ( K e. ZZ -> ( ( ( K - 1 ) + 1 ) / 2 ) = ( K / 2 ) ) |
| 31 |
30
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) + 1 ) / 2 ) = ( K / 2 ) ) |
| 32 |
|
simpr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K mod 2 ) =/= 0 ) |
| 33 |
32
|
neneqd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( K mod 2 ) = 0 ) |
| 34 |
|
mod0 |
|- ( ( K e. RR /\ 2 e. RR+ ) -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
| 35 |
1 5 34
|
syl2anc |
|- ( K e. ZZ -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
| 36 |
35
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
| 37 |
33 36
|
mtbid |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( K / 2 ) e. ZZ ) |
| 38 |
31 37
|
eqneltrd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) |
| 39 |
|
simpl |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K e. ZZ ) |
| 40 |
|
1zzd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> 1 e. ZZ ) |
| 41 |
39 40
|
zsubcld |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K - 1 ) e. ZZ ) |
| 42 |
|
zeo2 |
|- ( ( K - 1 ) e. ZZ -> ( ( ( K - 1 ) / 2 ) e. ZZ <-> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) ) |
| 43 |
41 42
|
syl |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) / 2 ) e. ZZ <-> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) ) |
| 44 |
38 43
|
mpbird |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K - 1 ) / 2 ) e. ZZ ) |
| 45 |
|
flbi |
|- ( ( ( K / 2 ) e. RR /\ ( ( K - 1 ) / 2 ) e. ZZ ) -> ( ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) <-> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) ) |
| 46 |
28 44 45
|
syl2anc |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) <-> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) ) |
| 47 |
26 46
|
mpbird |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) ) |
| 48 |
47
|
oveq2d |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( 2 x. ( |_ ` ( K / 2 ) ) ) = ( 2 x. ( ( K - 1 ) / 2 ) ) ) |
| 49 |
48
|
oveq1d |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) = ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) ) |
| 50 |
11 12
|
subcld |
|- ( K e. ZZ -> ( K - 1 ) e. CC ) |
| 51 |
50 13 14
|
divcan2d |
|- ( K e. ZZ -> ( 2 x. ( ( K - 1 ) / 2 ) ) = ( K - 1 ) ) |
| 52 |
51
|
oveq1d |
|- ( K e. ZZ -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) |
| 53 |
52
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) |
| 54 |
29
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K - 1 ) + 1 ) = K ) |
| 55 |
49 53 54
|
3eqtrrd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K = ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) ) |