Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
2 |
|
1red |
|- ( K e. ZZ -> 1 e. RR ) |
3 |
1 2
|
resubcld |
|- ( K e. ZZ -> ( K - 1 ) e. RR ) |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
4
|
a1i |
|- ( K e. ZZ -> 2 e. RR+ ) |
6 |
1
|
lem1d |
|- ( K e. ZZ -> ( K - 1 ) <_ K ) |
7 |
3 1 5 6
|
lediv1dd |
|- ( K e. ZZ -> ( ( K - 1 ) / 2 ) <_ ( K / 2 ) ) |
8 |
1
|
rehalfcld |
|- ( K e. ZZ -> ( K / 2 ) e. RR ) |
9 |
5
|
rpreccld |
|- ( K e. ZZ -> ( 1 / 2 ) e. RR+ ) |
10 |
8 9
|
ltaddrpd |
|- ( K e. ZZ -> ( K / 2 ) < ( ( K / 2 ) + ( 1 / 2 ) ) ) |
11 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
12 |
2
|
recnd |
|- ( K e. ZZ -> 1 e. CC ) |
13 |
|
2cnd |
|- ( K e. ZZ -> 2 e. CC ) |
14 |
5
|
rpne0d |
|- ( K e. ZZ -> 2 =/= 0 ) |
15 |
11 12 13 14
|
divsubdird |
|- ( K e. ZZ -> ( ( K - 1 ) / 2 ) = ( ( K / 2 ) - ( 1 / 2 ) ) ) |
16 |
15
|
oveq1d |
|- ( K e. ZZ -> ( ( ( K - 1 ) / 2 ) + 1 ) = ( ( ( K / 2 ) - ( 1 / 2 ) ) + 1 ) ) |
17 |
11
|
halfcld |
|- ( K e. ZZ -> ( K / 2 ) e. CC ) |
18 |
13 14
|
reccld |
|- ( K e. ZZ -> ( 1 / 2 ) e. CC ) |
19 |
17 18 12
|
subadd23d |
|- ( K e. ZZ -> ( ( ( K / 2 ) - ( 1 / 2 ) ) + 1 ) = ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) ) |
20 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
21 |
20
|
oveq2i |
|- ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) = ( ( K / 2 ) + ( 1 / 2 ) ) |
22 |
21
|
a1i |
|- ( K e. ZZ -> ( ( K / 2 ) + ( 1 - ( 1 / 2 ) ) ) = ( ( K / 2 ) + ( 1 / 2 ) ) ) |
23 |
16 19 22
|
3eqtrrd |
|- ( K e. ZZ -> ( ( K / 2 ) + ( 1 / 2 ) ) = ( ( ( K - 1 ) / 2 ) + 1 ) ) |
24 |
10 23
|
breqtrd |
|- ( K e. ZZ -> ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) |
25 |
7 24
|
jca |
|- ( K e. ZZ -> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) |
26 |
25
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) |
27 |
1
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K e. RR ) |
28 |
27
|
rehalfcld |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K / 2 ) e. RR ) |
29 |
11 12
|
npcand |
|- ( K e. ZZ -> ( ( K - 1 ) + 1 ) = K ) |
30 |
29
|
oveq1d |
|- ( K e. ZZ -> ( ( ( K - 1 ) + 1 ) / 2 ) = ( K / 2 ) ) |
31 |
30
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) + 1 ) / 2 ) = ( K / 2 ) ) |
32 |
|
simpr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K mod 2 ) =/= 0 ) |
33 |
32
|
neneqd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( K mod 2 ) = 0 ) |
34 |
|
mod0 |
|- ( ( K e. RR /\ 2 e. RR+ ) -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
35 |
1 5 34
|
syl2anc |
|- ( K e. ZZ -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
36 |
35
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K mod 2 ) = 0 <-> ( K / 2 ) e. ZZ ) ) |
37 |
33 36
|
mtbid |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( K / 2 ) e. ZZ ) |
38 |
31 37
|
eqneltrd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) |
39 |
|
simpl |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K e. ZZ ) |
40 |
|
1zzd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> 1 e. ZZ ) |
41 |
39 40
|
zsubcld |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( K - 1 ) e. ZZ ) |
42 |
|
zeo2 |
|- ( ( K - 1 ) e. ZZ -> ( ( ( K - 1 ) / 2 ) e. ZZ <-> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) ) |
43 |
41 42
|
syl |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( ( K - 1 ) / 2 ) e. ZZ <-> -. ( ( ( K - 1 ) + 1 ) / 2 ) e. ZZ ) ) |
44 |
38 43
|
mpbird |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K - 1 ) / 2 ) e. ZZ ) |
45 |
|
flbi |
|- ( ( ( K / 2 ) e. RR /\ ( ( K - 1 ) / 2 ) e. ZZ ) -> ( ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) <-> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) ) |
46 |
28 44 45
|
syl2anc |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) <-> ( ( ( K - 1 ) / 2 ) <_ ( K / 2 ) /\ ( K / 2 ) < ( ( ( K - 1 ) / 2 ) + 1 ) ) ) ) |
47 |
26 46
|
mpbird |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) ) |
48 |
47
|
oveq2d |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( 2 x. ( |_ ` ( K / 2 ) ) ) = ( 2 x. ( ( K - 1 ) / 2 ) ) ) |
49 |
48
|
oveq1d |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) = ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) ) |
50 |
11 12
|
subcld |
|- ( K e. ZZ -> ( K - 1 ) e. CC ) |
51 |
50 13 14
|
divcan2d |
|- ( K e. ZZ -> ( 2 x. ( ( K - 1 ) / 2 ) ) = ( K - 1 ) ) |
52 |
51
|
oveq1d |
|- ( K e. ZZ -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) |
53 |
52
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) |
54 |
29
|
adantr |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> ( ( K - 1 ) + 1 ) = K ) |
55 |
49 53 54
|
3eqtrrd |
|- ( ( K e. ZZ /\ ( K mod 2 ) =/= 0 ) -> K = ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) ) |