Metamath Proof Explorer


Theorem elgch

Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion elgch ( 𝐴𝑉 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 df-gch GCH = ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } )
2 1 eleq2i ( 𝐴 ∈ GCH ↔ 𝐴 ∈ ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ) )
3 elun ( 𝐴 ∈ ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ) ↔ ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ) )
4 2 3 bitri ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ) )
5 breq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
6 pweq ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 )
7 6 breq2d ( 𝑦 = 𝐴 → ( 𝑥 ≺ 𝒫 𝑦𝑥 ≺ 𝒫 𝐴 ) )
8 5 7 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) ↔ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) )
9 8 notbid ( 𝑦 = 𝐴 → ( ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) ↔ ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) )
10 9 albidv ( 𝑦 = 𝐴 → ( ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) ↔ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) )
11 10 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ↔ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) )
12 11 orbi2d ( 𝐴𝑉 → ( ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦𝑥𝑥 ≺ 𝒫 𝑦 ) } ) ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) ) )
13 4 12 syl5bb ( 𝐴𝑉 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) ) )