Metamath Proof Explorer


Theorem elgch

Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion elgch
|- ( A e. V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) )

Proof

Step Hyp Ref Expression
1 df-gch
 |-  GCH = ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } )
2 1 eleq2i
 |-  ( A e. GCH <-> A e. ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) )
3 elun
 |-  ( A e. ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) <-> ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) )
4 2 3 bitri
 |-  ( A e. GCH <-> ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) )
5 breq1
 |-  ( y = z -> ( y ~< x <-> z ~< x ) )
6 pweq
 |-  ( y = z -> ~P y = ~P z )
7 6 breq2d
 |-  ( y = z -> ( x ~< ~P y <-> x ~< ~P z ) )
8 5 7 anbi12d
 |-  ( y = z -> ( ( y ~< x /\ x ~< ~P y ) <-> ( z ~< x /\ x ~< ~P z ) ) )
9 8 notbid
 |-  ( y = z -> ( -. ( y ~< x /\ x ~< ~P y ) <-> -. ( z ~< x /\ x ~< ~P z ) ) )
10 9 albidv
 |-  ( y = z -> ( A. x -. ( y ~< x /\ x ~< ~P y ) <-> A. x -. ( z ~< x /\ x ~< ~P z ) ) )
11 breq1
 |-  ( z = A -> ( z ~< x <-> A ~< x ) )
12 pweq
 |-  ( z = A -> ~P z = ~P A )
13 12 breq2d
 |-  ( z = A -> ( x ~< ~P z <-> x ~< ~P A ) )
14 11 13 anbi12d
 |-  ( z = A -> ( ( z ~< x /\ x ~< ~P z ) <-> ( A ~< x /\ x ~< ~P A ) ) )
15 14 notbid
 |-  ( z = A -> ( -. ( z ~< x /\ x ~< ~P z ) <-> -. ( A ~< x /\ x ~< ~P A ) ) )
16 15 albidv
 |-  ( z = A -> ( A. x -. ( z ~< x /\ x ~< ~P z ) <-> A. x -. ( A ~< x /\ x ~< ~P A ) ) )
17 10 16 elabgw
 |-  ( A e. V -> ( A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } <-> A. x -. ( A ~< x /\ x ~< ~P A ) ) )
18 17 orbi2d
 |-  ( A e. V -> ( ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) )
19 4 18 syl5bb
 |-  ( A e. V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) )