| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noel |
⊢ ¬ 𝐶 ∈ ∅ |
| 2 |
|
snprc |
⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) |
| 3 |
2
|
biimpi |
⊢ ( ¬ 𝐵 ∈ V → { 𝐵 } = ∅ ) |
| 4 |
3
|
imaeq2d |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ( 𝐴 “ ∅ ) ) |
| 5 |
|
ima0 |
⊢ ( 𝐴 “ ∅ ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ∅ ) |
| 7 |
6
|
eleq2d |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐶 ∈ ∅ ) ) |
| 8 |
1 7
|
mtbiri |
⊢ ( ¬ 𝐵 ∈ V → ¬ 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ) |
| 9 |
8
|
con4i |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 ∈ V ) |
| 10 |
|
elex |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐶 ∈ V ) |
| 11 |
9 10
|
jca |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 12 |
|
elimasng1 |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) ) |
| 14 |
11 13
|
mpcom |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) |