| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noel |
|- -. C e. (/) |
| 2 |
|
snprc |
|- ( -. B e. _V <-> { B } = (/) ) |
| 3 |
2
|
biimpi |
|- ( -. B e. _V -> { B } = (/) ) |
| 4 |
3
|
imaeq2d |
|- ( -. B e. _V -> ( A " { B } ) = ( A " (/) ) ) |
| 5 |
|
ima0 |
|- ( A " (/) ) = (/) |
| 6 |
4 5
|
eqtrdi |
|- ( -. B e. _V -> ( A " { B } ) = (/) ) |
| 7 |
6
|
eleq2d |
|- ( -. B e. _V -> ( C e. ( A " { B } ) <-> C e. (/) ) ) |
| 8 |
1 7
|
mtbiri |
|- ( -. B e. _V -> -. C e. ( A " { B } ) ) |
| 9 |
8
|
con4i |
|- ( C e. ( A " { B } ) -> B e. _V ) |
| 10 |
|
elex |
|- ( C e. ( A " { B } ) -> C e. _V ) |
| 11 |
9 10
|
jca |
|- ( C e. ( A " { B } ) -> ( B e. _V /\ C e. _V ) ) |
| 12 |
|
elimasng1 |
|- ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) <-> B A C ) ) |
| 13 |
12
|
biimpd |
|- ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) -> B A C ) ) |
| 14 |
11 13
|
mpcom |
|- ( C e. ( A " { B } ) -> B A C ) |