Metamath Proof Explorer


Theorem elintfv

Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Hypothesis elintfv.1 𝑋 ∈ V
Assertion elintfv ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝑋 ( 𝐹𝐵 ) ↔ ∀ 𝑦𝐵 𝑋 ∈ ( 𝐹𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 elintfv.1 𝑋 ∈ V
2 1 elint ( 𝑋 ( 𝐹𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹𝐵 ) → 𝑋𝑧 ) )
3 fvelimab ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝑧 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑦𝐵 ( 𝐹𝑦 ) = 𝑧 ) )
4 3 imbi1d ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝑧 ∈ ( 𝐹𝐵 ) → 𝑋𝑧 ) ↔ ( ∃ 𝑦𝐵 ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ) )
5 r19.23v ( ∀ 𝑦𝐵 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ( ∃ 𝑦𝐵 ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) )
6 4 5 bitr4di ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝑧 ∈ ( 𝐹𝐵 ) → 𝑋𝑧 ) ↔ ∀ 𝑦𝐵 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ) )
7 6 albidv ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹𝐵 ) → 𝑋𝑧 ) ↔ ∀ 𝑧𝑦𝐵 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ) )
8 ralcom4 ( ∀ 𝑦𝐵𝑧 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ∀ 𝑧𝑦𝐵 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) )
9 eqcom ( ( 𝐹𝑦 ) = 𝑧𝑧 = ( 𝐹𝑦 ) )
10 9 imbi1i ( ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ( 𝑧 = ( 𝐹𝑦 ) → 𝑋𝑧 ) )
11 10 albii ( ∀ 𝑧 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝐹𝑦 ) → 𝑋𝑧 ) )
12 fvex ( 𝐹𝑦 ) ∈ V
13 eleq2 ( 𝑧 = ( 𝐹𝑦 ) → ( 𝑋𝑧𝑋 ∈ ( 𝐹𝑦 ) ) )
14 12 13 ceqsalv ( ∀ 𝑧 ( 𝑧 = ( 𝐹𝑦 ) → 𝑋𝑧 ) ↔ 𝑋 ∈ ( 𝐹𝑦 ) )
15 11 14 bitri ( ∀ 𝑧 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ 𝑋 ∈ ( 𝐹𝑦 ) )
16 15 ralbii ( ∀ 𝑦𝐵𝑧 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ∀ 𝑦𝐵 𝑋 ∈ ( 𝐹𝑦 ) )
17 8 16 bitr3i ( ∀ 𝑧𝑦𝐵 ( ( 𝐹𝑦 ) = 𝑧𝑋𝑧 ) ↔ ∀ 𝑦𝐵 𝑋 ∈ ( 𝐹𝑦 ) )
18 7 17 bitrdi ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹𝐵 ) → 𝑋𝑧 ) ↔ ∀ 𝑦𝐵 𝑋 ∈ ( 𝐹𝑦 ) ) )
19 2 18 syl5bb ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝑋 ( 𝐹𝐵 ) ↔ ∀ 𝑦𝐵 𝑋 ∈ ( 𝐹𝑦 ) ) )