Step |
Hyp |
Ref |
Expression |
1 |
|
elintfv.1 |
⊢ 𝑋 ∈ V |
2 |
1
|
elint |
⊢ ( 𝑋 ∈ ∩ ( 𝐹 “ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ) |
3 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
4 |
3
|
imbi1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
5 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) |
6 |
4 5
|
bitr4di |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
7 |
6
|
albidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
8 |
|
ralcom4 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) |
9 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
10 |
9
|
imbi1i |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ) |
12 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
13 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑋 ∈ 𝑧 ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
12 13
|
ceqsalv |
⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
15 |
11 14
|
bitri |
⊢ ( ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
16 |
15
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
17 |
8 16
|
bitr3i |
⊢ ( ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
18 |
7 17
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
19 |
2 18
|
syl5bb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑋 ∈ ∩ ( 𝐹 “ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |