Metamath Proof Explorer


Theorem eluz4eluz3

Description: An integer greater than or equal to 4 is an integer greater than or equal to 3. (Contributed by AV, 5-Sep-2025)

Ref Expression
Assertion eluz4eluz3 ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ( ℤ ‘ 3 ) )

Proof

Step Hyp Ref Expression
1 3z 3 ∈ ℤ
2 3re 3 ∈ ℝ
3 4re 4 ∈ ℝ
4 3lt4 3 < 4
5 2 3 4 ltleii 3 ≤ 4
6 eluzuzle ( ( 3 ∈ ℤ ∧ 3 ≤ 4 ) → ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ( ℤ ‘ 3 ) ) )
7 1 5 6 mp2an ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ( ℤ ‘ 3 ) )