Metamath Proof Explorer


Theorem eluz4eluz3

Description: An integer greater than or equal to 4 is an integer greater than or equal to 3. (Contributed by AV, 5-Sep-2025)

Ref Expression
Assertion eluz4eluz3 X 4 X 3

Proof

Step Hyp Ref Expression
1 3z 3
2 3re 3
3 4re 4
4 3lt4 3 < 4
5 2 3 4 ltleii 3 4
6 eluzuzle 3 3 4 X 4 X 3
7 1 5 6 mp2an X 4 X 3