| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  ∧  0  ≤  𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 4 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 5 |  | 0red | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑀  ∈  ℝ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑁  ∈  ℝ ) | 
						
							| 8 | 5 6 7 | 3jca | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) | 
						
							| 9 | 3 4 8 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) | 
						
							| 10 |  | letr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 0  ≤  𝑀  ∧  𝑀  ≤  𝑁 )  →  0  ≤  𝑁 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 0  ≤  𝑀  ∧  𝑀  ≤  𝑁 )  →  0  ≤  𝑁 ) ) | 
						
							| 12 | 11 | expcomd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≤  𝑁  →  ( 0  ≤  𝑀  →  0  ≤  𝑁 ) ) ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( 𝑀  ≤  𝑁  →  ( 0  ≤  𝑀  →  0  ≤  𝑁 ) ) ) ) | 
						
							| 14 | 13 | 3imp1 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  ∧  0  ≤  𝑀 )  →  0  ≤  𝑁 ) | 
						
							| 15 |  | elnn0z | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 16 | 2 14 15 | sylanbrc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  ∧  0  ≤  𝑀 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  ( 0  ≤  𝑀  →  𝑁  ∈  ℕ0 ) ) | 
						
							| 18 | 1 17 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0  ≤  𝑀  →  𝑁  ∈  ℕ0 ) ) |