Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
en2snOLDOLD
Metamath Proof Explorer
Description: Obsolete version of en2sn as of 31-Jul-2024. (Contributed by NM , 9-Nov-2003) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
en2snOLDOLD
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 } ≈ { 𝐵 } )
Proof
Step
Hyp
Ref
Expression
1
ensn1g
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≈ 1o )
2
ensn1g
⊢ ( 𝐵 ∈ 𝐷 → { 𝐵 } ≈ 1o )
3
2
ensymd
⊢ ( 𝐵 ∈ 𝐷 → 1o ≈ { 𝐵 } )
4
entr
⊢ ( ( { 𝐴 } ≈ 1o ∧ 1o ≈ { 𝐵 } ) → { 𝐴 } ≈ { 𝐵 } )
5
1 3 4
syl2an
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 } ≈ { 𝐵 } )