Metamath Proof Explorer


Theorem eqoprab2b

Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker eqoprab2bw when possible. (Contributed by Mario Carneiro, 4-Jan-2017) (New usage is discouraged.)

Ref Expression
Assertion eqoprab2b ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ↔ ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 ssoprab2b ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ↔ ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) )
2 ssoprab2b ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↔ ∀ 𝑥𝑦𝑧 ( 𝜓𝜑 ) )
3 1 2 anbi12i ( ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ∧ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ) ↔ ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦𝑧 ( 𝜓𝜑 ) ) )
4 eqss ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ↔ ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ∧ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ⊆ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ) )
5 2albiim ( ∀ 𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∀ 𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝑧 ( 𝜓𝜑 ) ) )
6 5 albii ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝑧 ( 𝜓𝜑 ) ) )
7 19.26 ( ∀ 𝑥 ( ∀ 𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝑧 ( 𝜓𝜑 ) ) ↔ ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦𝑧 ( 𝜓𝜑 ) ) )
8 6 7 bitri ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦𝑧 ( 𝜓𝜑 ) ) )
9 3 4 8 3bitr4i ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } ↔ ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) )