| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltord.1 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | ltord.2 | ⊢ ( 𝑥  =  𝐶  →  𝐴  =  𝑀 ) | 
						
							| 3 |  | ltord.3 | ⊢ ( 𝑥  =  𝐷  →  𝐴  =  𝑁 ) | 
						
							| 4 |  | ltord.4 | ⊢ 𝑆  ⊆  ℝ | 
						
							| 5 |  | ltord.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | ltord2.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  <  𝑦  →  𝐵  <  𝐴 ) ) | 
						
							| 7 | 1 | negeqd | ⊢ ( 𝑥  =  𝑦  →  - 𝐴  =  - 𝐵 ) | 
						
							| 8 | 2 | negeqd | ⊢ ( 𝑥  =  𝐶  →  - 𝐴  =  - 𝑀 ) | 
						
							| 9 | 3 | negeqd | ⊢ ( 𝑥  =  𝐷  →  - 𝐴  =  - 𝑁 ) | 
						
							| 10 | 5 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 11 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ ) | 
						
							| 12 | 1 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  ℝ  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 13 | 12 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ  ∧  𝑦  ∈  𝑆 )  →  𝐵  ∈  ℝ ) | 
						
							| 14 | 11 13 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 14 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 5 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | ltneg | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  - 𝐴  <  - 𝐵 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐵  <  𝐴  ↔  - 𝐴  <  - 𝐵 ) ) | 
						
							| 19 | 6 18 | sylibd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  <  𝑦  →  - 𝐴  <  - 𝐵 ) ) | 
						
							| 20 | 7 8 9 4 10 19 | eqord1 | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐶  =  𝐷  ↔  - 𝑀  =  - 𝑁 ) ) | 
						
							| 21 | 2 | eleq1d | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴  ∈  ℝ  ↔  𝑀  ∈  ℝ ) ) | 
						
							| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ  ∧  𝐶  ∈  𝑆 )  →  𝑀  ∈  ℝ ) | 
						
							| 23 | 11 22 | sylan | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑆 )  →  𝑀  ∈  ℝ ) | 
						
							| 24 | 23 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 26 | 3 | eleq1d | ⊢ ( 𝑥  =  𝐷  →  ( 𝐴  ∈  ℝ  ↔  𝑁  ∈  ℝ ) ) | 
						
							| 27 | 26 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ  ∧  𝐷  ∈  𝑆 )  →  𝑁  ∈  ℝ ) | 
						
							| 28 | 11 27 | sylan | ⊢ ( ( 𝜑  ∧  𝐷  ∈  𝑆 )  →  𝑁  ∈  ℝ ) | 
						
							| 29 | 28 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 30 | 29 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 31 | 25 30 | neg11ad | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( - 𝑀  =  - 𝑁  ↔  𝑀  =  𝑁 ) ) | 
						
							| 32 | 20 31 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐶  =  𝐷  ↔  𝑀  =  𝑁 ) ) |