| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltord.1 |  |-  ( x = y -> A = B ) | 
						
							| 2 |  | ltord.2 |  |-  ( x = C -> A = M ) | 
						
							| 3 |  | ltord.3 |  |-  ( x = D -> A = N ) | 
						
							| 4 |  | ltord.4 |  |-  S C_ RR | 
						
							| 5 |  | ltord.5 |  |-  ( ( ph /\ x e. S ) -> A e. RR ) | 
						
							| 6 |  | ltord2.6 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) ) | 
						
							| 7 | 1 | negeqd |  |-  ( x = y -> -u A = -u B ) | 
						
							| 8 | 2 | negeqd |  |-  ( x = C -> -u A = -u M ) | 
						
							| 9 | 3 | negeqd |  |-  ( x = D -> -u A = -u N ) | 
						
							| 10 | 5 | renegcld |  |-  ( ( ph /\ x e. S ) -> -u A e. RR ) | 
						
							| 11 | 5 | ralrimiva |  |-  ( ph -> A. x e. S A e. RR ) | 
						
							| 12 | 1 | eleq1d |  |-  ( x = y -> ( A e. RR <-> B e. RR ) ) | 
						
							| 13 | 12 | rspccva |  |-  ( ( A. x e. S A e. RR /\ y e. S ) -> B e. RR ) | 
						
							| 14 | 11 13 | sylan |  |-  ( ( ph /\ y e. S ) -> B e. RR ) | 
						
							| 15 | 14 | adantrl |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> B e. RR ) | 
						
							| 16 | 5 | adantrr |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> A e. RR ) | 
						
							| 17 |  | ltneg |  |-  ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -u A < -u B ) ) | 
						
							| 18 | 15 16 17 | syl2anc |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( B < A <-> -u A < -u B ) ) | 
						
							| 19 | 6 18 | sylibd |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> -u A < -u B ) ) | 
						
							| 20 | 7 8 9 4 10 19 | eqord1 |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> -u M = -u N ) ) | 
						
							| 21 | 2 | eleq1d |  |-  ( x = C -> ( A e. RR <-> M e. RR ) ) | 
						
							| 22 | 21 | rspccva |  |-  ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR ) | 
						
							| 23 | 11 22 | sylan |  |-  ( ( ph /\ C e. S ) -> M e. RR ) | 
						
							| 24 | 23 | adantrr |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. CC ) | 
						
							| 26 | 3 | eleq1d |  |-  ( x = D -> ( A e. RR <-> N e. RR ) ) | 
						
							| 27 | 26 | rspccva |  |-  ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR ) | 
						
							| 28 | 11 27 | sylan |  |-  ( ( ph /\ D e. S ) -> N e. RR ) | 
						
							| 29 | 28 | adantrl |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. RR ) | 
						
							| 30 | 29 | recnd |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. CC ) | 
						
							| 31 | 25 30 | neg11ad |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( -u M = -u N <-> M = N ) ) | 
						
							| 32 | 20 31 | bitrd |  |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |