| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqvincf.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							eqvincf.2 | 
							⊢ Ⅎ 𝑥 𝐵  | 
						
						
							| 3 | 
							
								
							 | 
							eqvincf.3 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 4 | 
							
								3
							 | 
							eqvinc | 
							⊢ ( 𝐴  =  𝐵  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  𝐵 ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑥 𝑦  =  𝐴  | 
						
						
							| 6 | 
							
								2
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑥 𝑦  =  𝐵  | 
						
						
							| 7 | 
							
								5 6
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑦  =  𝐴  ∧  𝑦  =  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  𝐴  ↔  𝑥  =  𝐴 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  𝐵  ↔  𝑥  =  𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								7 8 11
							 | 
							cbvexv1 | 
							⊢ ( ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitri | 
							⊢ ( 𝐴  =  𝐵  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 ) )  |