| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqvincf.1 | 
							 |-  F/_ x A  | 
						
						
							| 2 | 
							
								
							 | 
							eqvincf.2 | 
							 |-  F/_ x B  | 
						
						
							| 3 | 
							
								
							 | 
							eqvincf.3 | 
							 |-  A e. _V  | 
						
						
							| 4 | 
							
								3
							 | 
							eqvinc | 
							 |-  ( A = B <-> E. y ( y = A /\ y = B ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							nfeq2 | 
							 |-  F/ x y = A  | 
						
						
							| 6 | 
							
								2
							 | 
							nfeq2 | 
							 |-  F/ x y = B  | 
						
						
							| 7 | 
							
								5 6
							 | 
							nfan | 
							 |-  F/ x ( y = A /\ y = B )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							 |-  F/ y ( x = A /\ x = B )  | 
						
						
							| 9 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = x -> ( y = A <-> x = A ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = x -> ( y = B <-> x = B ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							anbi12d | 
							 |-  ( y = x -> ( ( y = A /\ y = B ) <-> ( x = A /\ x = B ) ) )  | 
						
						
							| 12 | 
							
								7 8 11
							 | 
							cbvexv1 | 
							 |-  ( E. y ( y = A /\ y = B ) <-> E. x ( x = A /\ x = B ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitri | 
							 |-  ( A = B <-> E. x ( x = A /\ x = B ) )  |