| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extru |
⊢ ∃ 𝑥 ⊤ |
| 2 |
1
|
biantrur |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 ⊤ ∧ ∃ 𝑦 ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) ) |
| 3 |
|
hbaev |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 4 |
3
|
19.8w |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 5 |
|
hbnaev |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 6 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 7 |
5 6
|
sylib |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 8 |
7
|
con4i |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑦 ) |
| 9 |
4 8
|
impbii |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 10 |
|
trut |
⊢ ( 𝑥 = 𝑦 ↔ ( ⊤ → 𝑥 = 𝑦 ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) |
| 12 |
11
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦 ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) |
| 13 |
9 12
|
bitri |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦 ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) |
| 14 |
|
eu3v |
⊢ ( ∃! 𝑥 ⊤ ↔ ( ∃ 𝑥 ⊤ ∧ ∃ 𝑦 ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) ) |
| 15 |
2 13 14
|
3bitr4ri |
⊢ ( ∃! 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 ) |