| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 2 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 3 | 1 2 | nnmulcli | ⊢ ( 6  ·  9 )  ∈  ℕ | 
						
							| 4 | 3 | nncni | ⊢ ( 6  ·  9 )  ∈  ℂ | 
						
							| 5 | 1 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 6 | 2 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 7 | 5 6 | pm3.2i | ⊢ ( 6  ∈  ℤ  ∧  9  ∈  ℤ ) | 
						
							| 8 |  | lcmcl | ⊢ ( ( 6  ∈  ℤ  ∧  9  ∈  ℤ )  →  ( 6  lcm  9 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0cnd | ⊢ ( ( 6  ∈  ℤ  ∧  9  ∈  ℤ )  →  ( 6  lcm  9 )  ∈  ℂ ) | 
						
							| 10 | 7 9 | ax-mp | ⊢ ( 6  lcm  9 )  ∈  ℂ | 
						
							| 11 |  | neggcd | ⊢ ( ( 6  ∈  ℤ  ∧  9  ∈  ℤ )  →  ( - 6  gcd  9 )  =  ( 6  gcd  9 ) ) | 
						
							| 12 | 7 11 | ax-mp | ⊢ ( - 6  gcd  9 )  =  ( 6  gcd  9 ) | 
						
							| 13 | 12 | eqcomi | ⊢ ( 6  gcd  9 )  =  ( - 6  gcd  9 ) | 
						
							| 14 |  | ex-gcd | ⊢ ( - 6  gcd  9 )  =  3 | 
						
							| 15 | 13 14 | eqtri | ⊢ ( 6  gcd  9 )  =  3 | 
						
							| 16 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 17 | 15 16 | eqeltri | ⊢ ( 6  gcd  9 )  ∈  ℂ | 
						
							| 18 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 19 | 15 18 | eqnetri | ⊢ ( 6  gcd  9 )  ≠  0 | 
						
							| 20 | 17 19 | pm3.2i | ⊢ ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) | 
						
							| 21 | 1 2 | pm3.2i | ⊢ ( 6  ∈  ℕ  ∧  9  ∈  ℕ ) | 
						
							| 22 |  | lcmgcdnn | ⊢ ( ( 6  ∈  ℕ  ∧  9  ∈  ℕ )  →  ( ( 6  lcm  9 )  ·  ( 6  gcd  9 ) )  =  ( 6  ·  9 ) ) | 
						
							| 23 | 21 22 | mp1i | ⊢ ( ( ( 6  ·  9 )  ∈  ℂ  ∧  ( 6  lcm  9 )  ∈  ℂ  ∧  ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) )  →  ( ( 6  lcm  9 )  ·  ( 6  gcd  9 ) )  =  ( 6  ·  9 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( ( ( 6  ·  9 )  ∈  ℂ  ∧  ( 6  lcm  9 )  ∈  ℂ  ∧  ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) )  →  ( 6  ·  9 )  =  ( ( 6  lcm  9 )  ·  ( 6  gcd  9 ) ) ) | 
						
							| 25 |  | divmul3 | ⊢ ( ( ( 6  ·  9 )  ∈  ℂ  ∧  ( 6  lcm  9 )  ∈  ℂ  ∧  ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) )  →  ( ( ( 6  ·  9 )  /  ( 6  gcd  9 ) )  =  ( 6  lcm  9 )  ↔  ( 6  ·  9 )  =  ( ( 6  lcm  9 )  ·  ( 6  gcd  9 ) ) ) ) | 
						
							| 26 | 24 25 | mpbird | ⊢ ( ( ( 6  ·  9 )  ∈  ℂ  ∧  ( 6  lcm  9 )  ∈  ℂ  ∧  ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) )  →  ( ( 6  ·  9 )  /  ( 6  gcd  9 ) )  =  ( 6  lcm  9 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( ( 6  ·  9 )  ∈  ℂ  ∧  ( 6  lcm  9 )  ∈  ℂ  ∧  ( ( 6  gcd  9 )  ∈  ℂ  ∧  ( 6  gcd  9 )  ≠  0 ) )  →  ( 6  lcm  9 )  =  ( ( 6  ·  9 )  /  ( 6  gcd  9 ) ) ) | 
						
							| 28 | 4 10 20 27 | mp3an | ⊢ ( 6  lcm  9 )  =  ( ( 6  ·  9 )  /  ( 6  gcd  9 ) ) | 
						
							| 29 | 15 | oveq2i | ⊢ ( ( 6  ·  9 )  /  ( 6  gcd  9 ) )  =  ( ( 6  ·  9 )  /  3 ) | 
						
							| 30 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 31 |  | 9cn | ⊢ 9  ∈  ℂ | 
						
							| 32 | 30 31 16 18 | divassi | ⊢ ( ( 6  ·  9 )  /  3 )  =  ( 6  ·  ( 9  /  3 ) ) | 
						
							| 33 |  | 3t3e9 | ⊢ ( 3  ·  3 )  =  9 | 
						
							| 34 | 33 | eqcomi | ⊢ 9  =  ( 3  ·  3 ) | 
						
							| 35 | 34 | oveq1i | ⊢ ( 9  /  3 )  =  ( ( 3  ·  3 )  /  3 ) | 
						
							| 36 | 16 16 18 | divcan3i | ⊢ ( ( 3  ·  3 )  /  3 )  =  3 | 
						
							| 37 | 35 36 | eqtri | ⊢ ( 9  /  3 )  =  3 | 
						
							| 38 | 37 | oveq2i | ⊢ ( 6  ·  ( 9  /  3 ) )  =  ( 6  ·  3 ) | 
						
							| 39 |  | 6t3e18 | ⊢ ( 6  ·  3 )  =  ; 1 8 | 
						
							| 40 | 32 38 39 | 3eqtri | ⊢ ( ( 6  ·  9 )  /  3 )  =  ; 1 8 | 
						
							| 41 | 28 29 40 | 3eqtri | ⊢ ( 6  lcm  9 )  =  ; 1 8 |