Metamath Proof Explorer


Theorem f1cnvcnv

Description: Two ways to express that a set A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion f1cnvcnv ( 𝐴 : dom 𝐴1-1→ V ↔ ( Fun 𝐴 ∧ Fun 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-f1 ( 𝐴 : dom 𝐴1-1→ V ↔ ( 𝐴 : dom 𝐴 ⟶ V ∧ Fun 𝐴 ) )
2 dffn2 ( 𝐴 Fn dom 𝐴 𝐴 : dom 𝐴 ⟶ V )
3 dmcnvcnv dom 𝐴 = dom 𝐴
4 df-fn ( 𝐴 Fn dom 𝐴 ↔ ( Fun 𝐴 ∧ dom 𝐴 = dom 𝐴 ) )
5 3 4 mpbiran2 ( 𝐴 Fn dom 𝐴 ↔ Fun 𝐴 )
6 2 5 bitr3i ( 𝐴 : dom 𝐴 ⟶ V ↔ Fun 𝐴 )
7 relcnv Rel 𝐴
8 dfrel2 ( Rel 𝐴 𝐴 = 𝐴 )
9 7 8 mpbi 𝐴 = 𝐴
10 9 funeqi ( Fun 𝐴 ↔ Fun 𝐴 )
11 6 10 anbi12ci ( ( 𝐴 : dom 𝐴 ⟶ V ∧ Fun 𝐴 ) ↔ ( Fun 𝐴 ∧ Fun 𝐴 ) )
12 1 11 bitri ( 𝐴 : dom 𝐴1-1→ V ↔ ( Fun 𝐴 ∧ Fun 𝐴 ) )