Step |
Hyp |
Ref |
Expression |
1 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
2 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) = ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ) |
3 |
2
|
sseq1d |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ↔ ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) ) |
4 |
|
ssundif |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
5 |
|
unidm |
⊢ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ 𝐴 ) |
6 |
5
|
sseq2i |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) ↔ ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
7 |
|
id |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
8 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
9 |
8 1
|
sseqtrri |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ( 𝐹 “ dom 𝐹 ) |
10 |
9
|
a1i |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ 𝐴 ) ⊆ ( 𝐹 “ dom 𝐹 ) ) |
11 |
7 10
|
eqssd |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
12 |
6 11
|
sylbi |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
13 |
4 12
|
sylbir |
⊢ ( ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
14 |
3 13
|
biimtrdi |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) ) |
15 |
14
|
imp |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
16 |
1 15
|
eqtr3id |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) → ran 𝐹 = ( 𝐹 “ 𝐴 ) ) |
17 |
16
|
ex |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ran 𝐹 = ( 𝐹 “ 𝐴 ) ) ) |
18 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
19 |
18
|
eqcomi |
⊢ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
20 |
19
|
sseq2i |
⊢ ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ran ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
21 |
19
|
eqeq2i |
⊢ ( ran 𝐹 = ran ( 𝐹 ↾ 𝐴 ) ↔ ran 𝐹 = ( 𝐹 “ 𝐴 ) ) |
22 |
17 20 21
|
3imtr4g |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ran ( 𝐹 ↾ 𝐴 ) → ran 𝐹 = ran ( 𝐹 ↾ 𝐴 ) ) ) |