| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocof1ob |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |
| 2 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 3 |
|
f1oeq3 |
⊢ ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 4 |
2 3
|
imbitrid |
⊢ ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 6 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 → 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 7 |
5 6
|
impbid1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 8 |
7
|
anbi1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |
| 9 |
1 8
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |