Metamath Proof Explorer


Theorem f1ocof1ob2

Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. Symmetric version of f1ocof1ob including the fact that F is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024) (Proof shortened by AV, 7-Oct-2024)

Ref Expression
Assertion f1ocof1ob2 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( 𝐹 : 𝐴1-1-onto𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 f1ocof1ob ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )
2 f1f1orn ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴1-1-onto→ ran 𝐹 )
3 f1oeq3 ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴1-1-onto→ ran 𝐹𝐹 : 𝐴1-1-onto𝐶 ) )
4 2 3 syl5ib ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴1-1-onto𝐶 ) )
5 4 3ad2ant3 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴1-1-onto𝐶 ) )
6 f1of1 ( 𝐹 : 𝐴1-1-onto𝐶𝐹 : 𝐴1-1𝐶 )
7 5 6 impbid1 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴1-1-onto𝐶 ) )
8 7 anbi1d ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1-onto𝐷 ) ↔ ( 𝐹 : 𝐴1-1-onto𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )
9 1 8 bitrd ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( 𝐹 : 𝐴1-1-onto𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )