Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocof1ob |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) ) ) |
2 |
|
f1f1orn |
|- ( F : A -1-1-> C -> F : A -1-1-onto-> ran F ) |
3 |
|
f1oeq3 |
|- ( ran F = C -> ( F : A -1-1-onto-> ran F <-> F : A -1-1-onto-> C ) ) |
4 |
2 3
|
syl5ib |
|- ( ran F = C -> ( F : A -1-1-> C -> F : A -1-1-onto-> C ) ) |
5 |
4
|
3ad2ant3 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> C -> F : A -1-1-onto-> C ) ) |
6 |
|
f1of1 |
|- ( F : A -1-1-onto-> C -> F : A -1-1-> C ) |
7 |
5 6
|
impbid1 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> C <-> F : A -1-1-onto-> C ) ) |
8 |
7
|
anbi1d |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) <-> ( F : A -1-1-onto-> C /\ G : C -1-1-onto-> D ) ) ) |
9 |
1 8
|
bitrd |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-onto-> C /\ G : C -1-1-onto-> D ) ) ) |