Metamath Proof Explorer


Theorem f1ocof1ob

Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Assertion f1ocof1ob ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 ffrn ( 𝐹 : 𝐴𝐵𝐹 : 𝐴 ⟶ ran 𝐹 )
2 1 3ad2ant1 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → 𝐹 : 𝐴 ⟶ ran 𝐹 )
3 feq3 ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 ⟶ ran 𝐹𝐹 : 𝐴𝐶 ) )
4 3 3ad2ant3 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 ⟶ ran 𝐹𝐹 : 𝐴𝐶 ) )
5 2 4 mpbid ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → 𝐹 : 𝐴𝐶 )
6 f1cof1b ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1𝐷 ↔ ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1𝐷 ) ) )
7 5 6 syld3an1 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1𝐷 ↔ ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1𝐷 ) ) )
8 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
9 fnfocofob ( ( 𝐹 Fn 𝐴𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴onto𝐷𝐺 : 𝐶onto𝐷 ) )
10 8 9 syl3an1 ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴onto𝐷𝐺 : 𝐶onto𝐷 ) )
11 7 10 anbi12d ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( ( 𝐺𝐹 ) : 𝐴1-1𝐷 ∧ ( 𝐺𝐹 ) : 𝐴onto𝐷 ) ↔ ( ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1𝐷 ) ∧ 𝐺 : 𝐶onto𝐷 ) ) )
12 anass ( ( ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1𝐷 ) ∧ 𝐺 : 𝐶onto𝐷 ) ↔ ( 𝐹 : 𝐴1-1𝐶 ∧ ( 𝐺 : 𝐶1-1𝐷𝐺 : 𝐶onto𝐷 ) ) )
13 11 12 bitrdi ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( ( 𝐺𝐹 ) : 𝐴1-1𝐷 ∧ ( 𝐺𝐹 ) : 𝐴onto𝐷 ) ↔ ( 𝐹 : 𝐴1-1𝐶 ∧ ( 𝐺 : 𝐶1-1𝐷𝐺 : 𝐶onto𝐷 ) ) ) )
14 df-f1o ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( ( 𝐺𝐹 ) : 𝐴1-1𝐷 ∧ ( 𝐺𝐹 ) : 𝐴onto𝐷 ) )
15 df-f1o ( 𝐺 : 𝐶1-1-onto𝐷 ↔ ( 𝐺 : 𝐶1-1𝐷𝐺 : 𝐶onto𝐷 ) )
16 15 anbi2i ( ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1-onto𝐷 ) ↔ ( 𝐹 : 𝐴1-1𝐶 ∧ ( 𝐺 : 𝐶1-1𝐷𝐺 : 𝐶onto𝐷 ) ) )
17 13 14 16 3bitr4g ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐶𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺𝐹 ) : 𝐴1-1-onto𝐷 ↔ ( 𝐹 : 𝐴1-1𝐶𝐺 : 𝐶1-1-onto𝐷 ) ) )