Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ocof1ob | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrn | |
|
2 | 1 | 3ad2ant1 | |
3 | feq3 | |
|
4 | 3 | 3ad2ant3 | |
5 | 2 4 | mpbid | |
6 | f1cof1b | |
|
7 | 5 6 | syld3an1 | |
8 | ffn | |
|
9 | fnfocofob | |
|
10 | 8 9 | syl3an1 | |
11 | 7 10 | anbi12d | |
12 | anass | |
|
13 | 11 12 | bitrdi | |
14 | df-f1o | |
|
15 | df-f1o | |
|
16 | 15 | anbi2i | |
17 | 13 14 16 | 3bitr4g | |