Metamath Proof Explorer


Theorem f1ocof1ob

Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Assertion f1ocof1ob F:ABG:CDranF=CGF:A1-1 ontoDF:A1-1CG:C1-1 ontoD

Proof

Step Hyp Ref Expression
1 ffrn F:ABF:AranF
2 1 3ad2ant1 F:ABG:CDranF=CF:AranF
3 feq3 ranF=CF:AranFF:AC
4 3 3ad2ant3 F:ABG:CDranF=CF:AranFF:AC
5 2 4 mpbid F:ABG:CDranF=CF:AC
6 f1cof1b F:ACG:CDranF=CGF:A1-1DF:A1-1CG:C1-1D
7 5 6 syld3an1 F:ABG:CDranF=CGF:A1-1DF:A1-1CG:C1-1D
8 ffn F:ABFFnA
9 fnfocofob FFnAG:CDranF=CGF:AontoDG:ContoD
10 8 9 syl3an1 F:ABG:CDranF=CGF:AontoDG:ContoD
11 7 10 anbi12d F:ABG:CDranF=CGF:A1-1DGF:AontoDF:A1-1CG:C1-1DG:ContoD
12 anass F:A1-1CG:C1-1DG:ContoDF:A1-1CG:C1-1DG:ContoD
13 11 12 bitrdi F:ABG:CDranF=CGF:A1-1DGF:AontoDF:A1-1CG:C1-1DG:ContoD
14 df-f1o GF:A1-1 ontoDGF:A1-1DGF:AontoD
15 df-f1o G:C1-1 ontoDG:C1-1DG:ContoD
16 15 anbi2i F:A1-1CG:C1-1 ontoDF:A1-1CG:C1-1DG:ContoD
17 13 14 16 3bitr4g F:ABG:CDranF=CGF:A1-1 ontoDF:A1-1CG:C1-1 ontoD