| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 2 | 1 | oveq2i | ⊢ ( 𝐴  FallFac  ( 0  +  1 ) )  =  ( 𝐴  FallFac  1 ) | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 |  | fallfacp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ∈  ℕ0 )  →  ( 𝐴  FallFac  ( 0  +  1 ) )  =  ( ( 𝐴  FallFac  0 )  ·  ( 𝐴  −  0 ) ) ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  FallFac  ( 0  +  1 ) )  =  ( ( 𝐴  FallFac  0 )  ·  ( 𝐴  −  0 ) ) ) | 
						
							| 6 |  | fallfac0 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  FallFac  0 )  =  1 ) | 
						
							| 7 |  | subid1 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 8 | 6 7 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  FallFac  0 )  ·  ( 𝐴  −  0 ) )  =  ( 1  ·  𝐴 ) ) | 
						
							| 9 |  | mullid | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 10 | 5 8 9 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  FallFac  ( 0  +  1 ) )  =  𝐴 ) | 
						
							| 11 | 2 10 | eqtr3id | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  FallFac  1 )  =  𝐴 ) |