| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffthres2c.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
ffthres2c.e |
⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) |
| 3 |
|
ffthres2c.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
ffthres2c.r |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 5 |
|
ffthres2c.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 6 |
1 2 3 4 5
|
fullres2c |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Full 𝐸 ) 𝐺 ) ) |
| 7 |
1 2 3 4 5
|
fthres2c |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ↔ ( 𝐹 ( 𝐶 Full 𝐸 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) ) |
| 9 |
|
brin |
⊢ ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
| 10 |
|
brin |
⊢ ( 𝐹 ( ( 𝐶 Full 𝐸 ) ∩ ( 𝐶 Faith 𝐸 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐸 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) |
| 11 |
8 9 10
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ 𝐹 ( ( 𝐶 Full 𝐸 ) ∩ ( 𝐶 Faith 𝐸 ) ) 𝐺 ) ) |