Step |
Hyp |
Ref |
Expression |
1 |
|
inclfusubc.j |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
2 |
|
inclfusubc.s |
⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) |
3 |
|
inclfusubc.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
inclfusubc.f |
⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) |
5 |
|
inclfusubc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) ) |
6 |
|
fthfunc |
⊢ ( 𝑆 Faith 𝐶 ) ⊆ ( 𝑆 Func 𝐶 ) |
7 |
|
eqid |
⊢ ( idfunc ‘ 𝑆 ) = ( idfunc ‘ 𝑆 ) |
8 |
2 7
|
rescfth |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Faith 𝐶 ) ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Faith 𝐶 ) ) |
10 |
6 9
|
sselid |
⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) |
11 |
|
df-br |
⊢ ( 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 Func 𝐶 ) ) |
12 |
4 5
|
opeq12d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
13 |
2 7 3
|
idfusubc |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( idfunc ‘ 𝑆 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
15 |
12 14
|
eqtr4d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( idfunc ‘ 𝑆 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 Func 𝐶 ) ↔ ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) ) |
17 |
11 16
|
syl5bb |
⊢ ( 𝜑 → ( 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ↔ ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) ) |
18 |
10 17
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ) |