Step |
Hyp |
Ref |
Expression |
1 |
|
inclfusubc.j |
|- ( ph -> J e. ( Subcat ` C ) ) |
2 |
|
inclfusubc.s |
|- S = ( C |`cat J ) |
3 |
|
inclfusubc.b |
|- B = ( Base ` S ) |
4 |
|
inclfusubc.f |
|- ( ph -> F = ( _I |` B ) ) |
5 |
|
inclfusubc.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) ) |
6 |
|
fthfunc |
|- ( S Faith C ) C_ ( S Func C ) |
7 |
|
eqid |
|- ( idFunc ` S ) = ( idFunc ` S ) |
8 |
2 7
|
rescfth |
|- ( J e. ( Subcat ` C ) -> ( idFunc ` S ) e. ( S Faith C ) ) |
9 |
1 8
|
syl |
|- ( ph -> ( idFunc ` S ) e. ( S Faith C ) ) |
10 |
6 9
|
sselid |
|- ( ph -> ( idFunc ` S ) e. ( S Func C ) ) |
11 |
|
df-br |
|- ( F ( S Func C ) G <-> <. F , G >. e. ( S Func C ) ) |
12 |
4 5
|
opeq12d |
|- ( ph -> <. F , G >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
13 |
2 7 3
|
idfusubc |
|- ( J e. ( Subcat ` C ) -> ( idFunc ` S ) = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
14 |
1 13
|
syl |
|- ( ph -> ( idFunc ` S ) = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
15 |
12 14
|
eqtr4d |
|- ( ph -> <. F , G >. = ( idFunc ` S ) ) |
16 |
15
|
eleq1d |
|- ( ph -> ( <. F , G >. e. ( S Func C ) <-> ( idFunc ` S ) e. ( S Func C ) ) ) |
17 |
11 16
|
syl5bb |
|- ( ph -> ( F ( S Func C ) G <-> ( idFunc ` S ) e. ( S Func C ) ) ) |
18 |
10 17
|
mpbird |
|- ( ph -> F ( S Func C ) G ) |