Step |
Hyp |
Ref |
Expression |
1 |
|
idfusubc.s |
|- S = ( C |`cat J ) |
2 |
|
idfusubc.i |
|- I = ( idFunc ` S ) |
3 |
|
idfusubc.b |
|- B = ( Base ` S ) |
4 |
1 2 3
|
idfusubc0 |
|- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
|
subcrcl |
|- ( J e. ( Subcat ` C ) -> C e. Cat ) |
7 |
|
id |
|- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
8 |
|
eqidd |
|- ( J e. ( Subcat ` C ) -> dom dom J = dom dom J ) |
9 |
7 8
|
subcfn |
|- ( J e. ( Subcat ` C ) -> J Fn ( dom dom J X. dom dom J ) ) |
10 |
7 9 5
|
subcss1 |
|- ( J e. ( Subcat ` C ) -> dom dom J C_ ( Base ` C ) ) |
11 |
1 5 6 9 10
|
reschom |
|- ( J e. ( Subcat ` C ) -> J = ( Hom ` S ) ) |
12 |
11
|
eqcomd |
|- ( J e. ( Subcat ` C ) -> ( Hom ` S ) = J ) |
13 |
12
|
oveqd |
|- ( J e. ( Subcat ` C ) -> ( x ( Hom ` S ) y ) = ( x J y ) ) |
14 |
13
|
reseq2d |
|- ( J e. ( Subcat ` C ) -> ( _I |` ( x ( Hom ` S ) y ) ) = ( _I |` ( x J y ) ) ) |
15 |
14
|
mpoeq3dv |
|- ( J e. ( Subcat ` C ) -> ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) ) |
16 |
15
|
opeq2d |
|- ( J e. ( Subcat ` C ) -> <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
17 |
4 16
|
eqtrd |
|- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |