Step |
Hyp |
Ref |
Expression |
1 |
|
idfusubc.s |
|- S = ( C |`cat J ) |
2 |
|
idfusubc.i |
|- I = ( idFunc ` S ) |
3 |
|
idfusubc.b |
|- B = ( Base ` S ) |
4 |
|
id |
|- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
5 |
1 4
|
subccat |
|- ( J e. ( Subcat ` C ) -> S e. Cat ) |
6 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
7 |
2 3 5 6
|
idfuval |
|- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) >. ) |
8 |
|
fveq2 |
|- ( z = <. x , y >. -> ( ( Hom ` S ) ` z ) = ( ( Hom ` S ) ` <. x , y >. ) ) |
9 |
|
df-ov |
|- ( x ( Hom ` S ) y ) = ( ( Hom ` S ) ` <. x , y >. ) |
10 |
8 9
|
eqtr4di |
|- ( z = <. x , y >. -> ( ( Hom ` S ) ` z ) = ( x ( Hom ` S ) y ) ) |
11 |
10
|
reseq2d |
|- ( z = <. x , y >. -> ( _I |` ( ( Hom ` S ) ` z ) ) = ( _I |` ( x ( Hom ` S ) y ) ) ) |
12 |
11
|
mpompt |
|- ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) |
13 |
12
|
a1i |
|- ( J e. ( Subcat ` C ) -> ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) ) |
14 |
13
|
opeq2d |
|- ( J e. ( Subcat ` C ) -> <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |
15 |
7 14
|
eqtrd |
|- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |