Step |
Hyp |
Ref |
Expression |
1 |
|
idfusubc.s |
⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) |
2 |
|
idfusubc.i |
⊢ 𝐼 = ( idfunc ‘ 𝑆 ) |
3 |
|
idfusubc.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
id |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
5 |
1 4
|
subccat |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝑆 ∈ Cat ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
7 |
2 3 5 6
|
idfuval |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) 〉 ) |
8 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑆 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
9 |
|
df-ov |
⊢ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) = ( ( Hom ‘ 𝑆 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
10 |
8 9
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) = ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) |
11 |
10
|
reseq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) |
12 |
11
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) |
13 |
12
|
a1i |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) ) |
14 |
13
|
opeq2d |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |
15 |
7 14
|
eqtrd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |