Metamath Proof Explorer


Theorem idfusubc0

Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)

Ref Expression
Hypotheses idfusubc.s S = C cat J
idfusubc.i I = id func S
idfusubc.b B = Base S
Assertion idfusubc0 J Subcat C I = I B x B , y B I x Hom S y

Proof

Step Hyp Ref Expression
1 idfusubc.s S = C cat J
2 idfusubc.i I = id func S
3 idfusubc.b B = Base S
4 id J Subcat C J Subcat C
5 1 4 subccat J Subcat C S Cat
6 eqid Hom S = Hom S
7 2 3 5 6 idfuval J Subcat C I = I B z B × B I Hom S z
8 fveq2 z = x y Hom S z = Hom S x y
9 df-ov x Hom S y = Hom S x y
10 8 9 eqtr4di z = x y Hom S z = x Hom S y
11 10 reseq2d z = x y I Hom S z = I x Hom S y
12 11 mpompt z B × B I Hom S z = x B , y B I x Hom S y
13 12 a1i J Subcat C z B × B I Hom S z = x B , y B I x Hom S y
14 13 opeq2d J Subcat C I B z B × B I Hom S z = I B x B , y B I x Hom S y
15 7 14 eqtrd J Subcat C I = I B x B , y B I x Hom S y