Metamath Proof Explorer


Theorem idfusubc

Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)

Ref Expression
Hypotheses idfusubc.s S = C cat J
idfusubc.i I = id func S
idfusubc.b B = Base S
Assertion idfusubc J Subcat C I = I B x B , y B I x J y

Proof

Step Hyp Ref Expression
1 idfusubc.s S = C cat J
2 idfusubc.i I = id func S
3 idfusubc.b B = Base S
4 1 2 3 idfusubc0 J Subcat C I = I B x B , y B I x Hom S y
5 eqid Base C = Base C
6 subcrcl J Subcat C C Cat
7 id J Subcat C J Subcat C
8 eqidd J Subcat C dom dom J = dom dom J
9 7 8 subcfn J Subcat C J Fn dom dom J × dom dom J
10 7 9 5 subcss1 J Subcat C dom dom J Base C
11 1 5 6 9 10 reschom J Subcat C J = Hom S
12 11 eqcomd J Subcat C Hom S = J
13 12 oveqd J Subcat C x Hom S y = x J y
14 13 reseq2d J Subcat C I x Hom S y = I x J y
15 14 mpoeq3dv J Subcat C x B , y B I x Hom S y = x B , y B I x J y
16 15 opeq2d J Subcat C I B x B , y B I x Hom S y = I B x B , y B I x J y
17 4 16 eqtrd J Subcat C I = I B x B , y B I x J y