Metamath Proof Explorer


Theorem idfusubc

Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)

Ref Expression
Hypotheses idfusubc.s S=CcatJ
idfusubc.i I=idfuncS
idfusubc.b B=BaseS
Assertion idfusubc JSubcatCI=IBxB,yBIxJy

Proof

Step Hyp Ref Expression
1 idfusubc.s S=CcatJ
2 idfusubc.i I=idfuncS
3 idfusubc.b B=BaseS
4 1 2 3 idfusubc0 JSubcatCI=IBxB,yBIxHomSy
5 eqid BaseC=BaseC
6 subcrcl JSubcatCCCat
7 id JSubcatCJSubcatC
8 eqidd JSubcatCdomdomJ=domdomJ
9 7 8 subcfn JSubcatCJFndomdomJ×domdomJ
10 7 9 5 subcss1 JSubcatCdomdomJBaseC
11 1 5 6 9 10 reschom JSubcatCJ=HomS
12 11 eqcomd JSubcatCHomS=J
13 12 oveqd JSubcatCxHomSy=xJy
14 13 reseq2d JSubcatCIxHomSy=IxJy
15 14 mpoeq3dv JSubcatCxB,yBIxHomSy=xB,yBIxJy
16 15 opeq2d JSubcatCIBxB,yBIxHomSy=IBxB,yBIxJy
17 4 16 eqtrd JSubcatCI=IBxB,yBIxJy