Metamath Proof Explorer


Theorem subcfn

Description: An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcixp.1 φJSubcatC
subcfn.2 φS=domdomJ
Assertion subcfn φJFnS×S

Proof

Step Hyp Ref Expression
1 subcixp.1 φJSubcatC
2 subcfn.2 φS=domdomJ
3 eqid Hom𝑓C=Hom𝑓C
4 1 3 subcssc φJcatHom𝑓C
5 4 2 sscfn1 φJFnS×S