Metamath Proof Explorer


Theorem sscfn1

Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses sscfn1.1 φHcatJ
sscfn1.2 φS=domdomH
Assertion sscfn1 φHFnS×S

Proof

Step Hyp Ref Expression
1 sscfn1.1 φHcatJ
2 sscfn1.2 φS=domdomH
3 brssc HcatJtJFnt×ts𝒫tHxs×s𝒫Jx
4 1 3 sylib φtJFnt×ts𝒫tHxs×s𝒫Jx
5 ixpfn Hxs×s𝒫JxHFns×s
6 simpr φHFns×sHFns×s
7 2 adantr φHFns×sS=domdomH
8 fndm HFns×sdomH=s×s
9 8 adantl φHFns×sdomH=s×s
10 9 dmeqd φHFns×sdomdomH=doms×s
11 dmxpid doms×s=s
12 10 11 eqtrdi φHFns×sdomdomH=s
13 7 12 eqtr2d φHFns×ss=S
14 13 sqxpeqd φHFns×ss×s=S×S
15 14 fneq2d φHFns×sHFns×sHFnS×S
16 6 15 mpbid φHFns×sHFnS×S
17 16 ex φHFns×sHFnS×S
18 5 17 syl5 φHxs×s𝒫JxHFnS×S
19 18 rexlimdvw φs𝒫tHxs×s𝒫JxHFnS×S
20 19 adantld φJFnt×ts𝒫tHxs×s𝒫JxHFnS×S
21 20 exlimdv φtJFnt×ts𝒫tHxs×s𝒫JxHFnS×S
22 4 21 mpd φHFnS×S