Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sscfn1.1 | |
|
sscfn1.2 | |
||
Assertion | sscfn1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | |
|
2 | sscfn1.2 | |
|
3 | brssc | |
|
4 | 1 3 | sylib | |
5 | ixpfn | |
|
6 | simpr | |
|
7 | 2 | adantr | |
8 | fndm | |
|
9 | 8 | adantl | |
10 | 9 | dmeqd | |
11 | dmxpid | |
|
12 | 10 11 | eqtrdi | |
13 | 7 12 | eqtr2d | |
14 | 13 | sqxpeqd | |
15 | 14 | fneq2d | |
16 | 6 15 | mpbid | |
17 | 16 | ex | |
18 | 5 17 | syl5 | |
19 | 18 | rexlimdvw | |
20 | 19 | adantld | |
21 | 20 | exlimdv | |
22 | 4 21 | mpd | |